Formula Booklet
for the Standardised Competence-Oriented
Written School-Leaving Examination (SRP)
Mathematics (AHS)
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sets</td>
<td>3</td>
</tr>
<tr>
<td>2 Prefixes</td>
<td>3</td>
</tr>
<tr>
<td>3 Powers</td>
<td>3</td>
</tr>
<tr>
<td>4 Logarithms</td>
<td>4</td>
</tr>
<tr>
<td>5 Quadratic Equations</td>
<td>4</td>
</tr>
<tr>
<td>6 Two-Dimensional Shapes</td>
<td>5</td>
</tr>
<tr>
<td>7 Solids</td>
<td>6</td>
</tr>
<tr>
<td>8 Trigonometry</td>
<td>6</td>
</tr>
<tr>
<td>9 Vectors</td>
<td>7</td>
</tr>
<tr>
<td>10 Straight Lines</td>
<td>8</td>
</tr>
<tr>
<td>11 Rates of Change</td>
<td>8</td>
</tr>
<tr>
<td>12 Differentiation and Integration</td>
<td>9</td>
</tr>
<tr>
<td>13 Statistics</td>
<td>9</td>
</tr>
<tr>
<td>14 Probability</td>
<td>10</td>
</tr>
<tr>
<td>15 Units of Measurement</td>
<td>12</td>
</tr>
<tr>
<td>16 Physical Quantities and Definitions</td>
<td>13</td>
</tr>
<tr>
<td>17 Financial Mathematics</td>
<td>13</td>
</tr>
<tr>
<td>Index</td>
<td>14</td>
</tr>
</tbody>
</table>
1 Sets

\[\in \] is an element of...
\[\notin \] is not an element of...
\[\cap \] intersection
\[\cup \] union
\[\subset \] proper subset
\[\subseteq \] subset
\[\setminus \] difference ("without")
\[\{ \} \] empty set

Sets of numbers

\[\mathbb{N} = \{0, 1, 2, \ldots\} \] natural numbers
\[\mathbb{Z} \] integers
\[\mathbb{Q} \] rational numbers
\[\mathbb{R} \] real numbers
\[\mathbb{C} \] complex numbers
\[\mathbb{R}^+ \] positive real numbers
\[\mathbb{R}_0^+ \] positive real numbers including zero

2 Prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Base</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>tera-</td>
<td>T</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>giga-</td>
<td>G</td>
<td>10^{9}</td>
<td></td>
</tr>
<tr>
<td>mega-</td>
<td>M</td>
<td>10^{6}</td>
<td></td>
</tr>
<tr>
<td>kilo-</td>
<td>k</td>
<td>10^{3}</td>
<td></td>
</tr>
<tr>
<td>hecto-</td>
<td>h</td>
<td>10^{2}</td>
<td></td>
</tr>
<tr>
<td>deca-</td>
<td>da</td>
<td>10^{1}</td>
<td></td>
</tr>
<tr>
<td>deci-</td>
<td>d</td>
<td>10^{-1}</td>
<td></td>
</tr>
<tr>
<td>centi-</td>
<td>c</td>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>milli-</td>
<td>m</td>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>micro-</td>
<td>μ</td>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>nano-</td>
<td>n</td>
<td>10^{-9}</td>
<td></td>
</tr>
<tr>
<td>pico-</td>
<td>p</td>
<td>10^{-12}</td>
<td></td>
</tr>
</tbody>
</table>

3 Powers

Powers with integer exponents

\[a \in \mathbb{R}; n \in \mathbb{N}\setminus\{0\} \]
\[a \in \mathbb{R}\setminus\{0\}; n \in \mathbb{N}\setminus\{0\} \]

\[a^n = a \cdot a \cdot \ldots \cdot a \]
\[a^1 = a \]
\[a^0 = 1 \]
\[a^{-1} = \frac{1}{a} \]
\[a^{-n} = \left(\frac{1}{a}\right)^n \]
\[n \text{ factors} \]

Powers with rational exponents (roots)

\[a, b \in \mathbb{R}_0^+; n, k \in \mathbb{N}\setminus\{0\} \text{ where } n \geq 2 \]

\[a = \sqrt[n]{b} \iff a^n = b \]
\[a^\frac{k}{n} = \sqrt[n]{a^k} \]
\[a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}} \]
\[a^{\frac{k}{n}} = \left(\sqrt[n]{a}\right)^k \]
\[\text{where } a > 0 \]
Calculation rules

\(a, b \in \mathbb{R}\setminus\{0\}; r, s \in \mathbb{Z} \)

or \(a, b \in \mathbb{R}^+; r, s \in \mathbb{Q} \)

\[
\begin{align*}
& a \cdot a = a^{r+s} \\
& \frac{a^r}{a^s} = a^{r-s} \\
& (a^s)^r = a^{rs} \\
& (a \cdot b)^r = a^r \cdot b^r \\
& \sqrt{a} = \frac{a}{\sqrt{a}} \\
& \sqrt[3]{a} = \left(\sqrt[3]{a}\right)^2 \quad (b \neq 0)
\end{align*}
\]

Binomial formulae

\(a, b \in \mathbb{R}; n \in \mathbb{N} \)

\[
\begin{align*}
(a + b)^2 &= a^2 + 2 \cdot a \cdot b + b^2 \\
(a - b)^2 &= a^2 - 2 \cdot a \cdot b + b^2 \\
(a + b) \cdot (a - b) &= a^2 - b^2
\end{align*}
\]

4 Logarithms

\(a, b, c \in \mathbb{R}^+ \) where \(a \neq 1; x, r \in \mathbb{R} \)

\[
\begin{align*}
x &= \log_a(b) \iff a^x = b \\
\log_a(b \cdot c) &= \log_a(b) + \log_a(c) \\
\log_a\left(\frac{b}{c}\right) &= \log_a(b) - \log_a(c) \\
\log_a(a^r) &= x \\
\log_a(1) &= 0 \\
\log_a\left(\frac{1}{a}\right) &= -1
\end{align*}
\]

natural logarithm (logarithm with base \(e \)): \(\ln(b) = \log_e(b) \)

common logarithm (logarithm with base 10): \(\lg(b) = \log_{10}(b) \)

5 Quadratic Equations

\(p, q \in \mathbb{R} \)

\(a, b, c \in \mathbb{R} \) where \(a \neq 0 \)

\[
\begin{align*}
x^2 + p \cdot x + q &= 0 \\
x_{1,2} &= -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}
\end{align*}
\]

Vieta’s Theorem

\(x_1 \) and \(x_2 \) are the solutions to the equation \(x^2 + p \cdot x + q = 0 \) if and only if:

\[
\begin{align*}
x_1 + x_2 &= -p \\
x_1 \cdot x_2 &= q
\end{align*}
\]

Linear factorisation:

\(x^2 + p \cdot x + q = (x - x_1) \cdot (x - x_2) \)
6 Two-Dimensional Shapes

Triangle

\[u = a + b + c \]

General triangle

\[A = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2} \]

Heron’s Formula

\[A = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)} \text{ where } s = \frac{a+b+c}{2} \]

Pythagorean theorem

\[a^2 + b^2 = c^2 \]

Quadrilateral

Square

\[A = a^2 \]
\[u = 4 \cdot a \]

Rhombus

\[A = a \cdot h_a = \frac{e \cdot f}{2} \]
\[u = 4 \cdot a \]

Parallelogram

\[A = a \cdot h_a = b \cdot h_b \]
\[u = 2 \cdot a + 2 \cdot b \]

Trapezium

\[A = \frac{(a+c) \cdot h}{2} \]
\[u = a + b + c + d \]

Kite

\[A = \frac{e \cdot f}{2} \]
\[u = 2 \cdot a + 2 \cdot b \]

Circle

\[A = \pi \cdot r^2 = \frac{\pi \cdot d^2}{4} \]
\[u = 2 \cdot \pi \cdot r = \pi \cdot d \]

Arc length and sector of a circle

\[\alpha \text{ in degrees (°)} \]
\[b = \pi \cdot r \cdot \frac{\alpha}{180°} \]
\[A = \pi \cdot r^2 \cdot \frac{\alpha}{360°} = \frac{b \cdot r}{2} \]
7 Solids

<table>
<thead>
<tr>
<th>Formula</th>
<th>Prism</th>
<th>Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = G \cdot h$</td>
<td>$V = G \cdot h$</td>
<td>$V = G \cdot h$</td>
</tr>
<tr>
<td>$M = u_G \cdot h$</td>
<td>$M = u_G \cdot h$</td>
<td>$M = u_G \cdot h$</td>
</tr>
<tr>
<td>$O = 2 \cdot G + M$</td>
<td>$O = 2 \cdot G + M$</td>
<td>$O = 2 \cdot G + M$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formula</th>
<th>Pyramid</th>
<th>Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = \frac{G \cdot h}{3}$</td>
<td>$V = \frac{G \cdot h}{3}$</td>
<td>$V = \frac{G \cdot h}{3}$</td>
</tr>
<tr>
<td>$O = G + M$</td>
<td>$O = G + M$</td>
<td>$O = G + M$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formula</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V = \frac{4}{3} \cdot \pi \cdot r^3$</td>
<td>$V = \frac{4}{3} \cdot \pi \cdot r^3$</td>
</tr>
<tr>
<td>$O = 4 \cdot \pi \cdot r^2$</td>
<td>$O = 4 \cdot \pi \cdot r^2$</td>
</tr>
</tbody>
</table>

8 Trigonometry

Converting between degrees and radians

Right-angled triangle trigonometry

- **Sine:** $\sin(\alpha) = \frac{\text{side opposite to } \alpha}{\text{hypotenuse}}$
- **Cosine:** $\cos(\alpha) = \frac{\text{side adjacent to } \alpha}{\text{hypotenuse}}$
- **Tangent:** $\tan(\alpha) = \frac{\text{side opposite to } \alpha}{\text{side adjacent to } \alpha}$
Unit circle trigonometry

\[\sin^2(\alpha) + \cos^2(\alpha) = 1 \]
\[\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \text{ for } \cos(\alpha) \neq 0 \]

9 Vectors

Vectors in \(\mathbb{R}^2 \)

Arrow from \(P \) to \(Q \):

\[P = (p_1, p_2), \quad Q = (q_1, q_2) \]

\[\overrightarrow{PQ} = (q_1 - p_1, q_2 - p_2) \]

Calculation rules in \(\mathbb{R}^2 \)

\[\begin{align*}
\vec{a} &= (a_1, a_2), \quad \vec{b} = (b_1, b_2), \\
\vec{a} \pm \vec{b} &= (a_1 \pm b_1, a_2 \pm b_2)
\end{align*} \]

\[k \cdot \vec{a} = k \cdot (a_1, a_2) \quad \text{where } k \in \mathbb{R} \]

Scalar product in \(\mathbb{R}^2 \)

\[\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 \]

Absolute value (length) of a vector in \(\mathbb{R}^2 \)

\[|\vec{a}| = \sqrt{a_1^2 + a_2^2} \]

Vector perpendicular to \(\vec{a} = (a_2) \) in \(\mathbb{R}^2 \)

\[\vec{n} = k \cdot \left(-\frac{a_2}{a_1} \right) \text{ where } k \in \mathbb{R}\{0\} \text{ and } |\vec{a}| \neq 0 \]

Criterion for two vectors to be perpendicular in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)

\[\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b} \text{ where } |\vec{a}| \neq 0; |\vec{b}| \neq 0 \]

Vectors in \(\mathbb{R}^n \)

Arrow from \(P \) to \(Q \):

\[P = (p_1, p_2, \ldots, p_n), \quad Q = (q_1, q_2, \ldots, q_n) \]

\[\overrightarrow{PQ} = (q_1 - p_1, q_2 - p_2, \ldots, q_n - p_n) \]

Calculation rules in \(\mathbb{R}^n \)

\[\begin{align*}
\vec{a} &= (a_1, a_2, \ldots, a_n), \quad \vec{b} = (b_1, b_2, \ldots, b_n), \\
\vec{a} \pm \vec{b} &= (a_1 \pm b_1, a_2 \pm b_2, \ldots, a_n \pm b_n)
\end{align*} \]

\[k \cdot \vec{a} = k \cdot (a_1, a_2, \ldots, a_n) \quad \text{where } k \in \mathbb{R} \]

Scalar product in \(\mathbb{R}^n \)

\[\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \ldots + a_n \cdot b_n \]

Absolute value (length) of a vector in \(\mathbb{R}^n \)

\[|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2} \]

Angle \(\varphi \) between \(\vec{a} \) and \(\vec{b} \) in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)

\[\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \quad \text{where } |\vec{a}| \neq 0; |\vec{b}| \neq 0 \]

Criterion for two vectors to be parallel in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)

\[\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b} \text{ where } k \in \mathbb{R}\{0\} \text{ and } |\vec{a}| \neq 0; |\vec{b}| \neq 0 \]
10 Straight Lines

\[g \ldots \text{line} \]
\[\vec{g} \ldots \text{a direction vector for the line } g \]
\[\vec{n} \ldots \text{a vector perpendicular to the line } g \]
\[X, P \ldots \text{points on the line } g \]
\[m \ldots \text{gradient of the line } g \]
\[\alpha \ldots \text{angle of slope of the line } g \]
\[a, b, c, k \in \mathbb{R} \]

Vector equation of a line \(g \) in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)
\[g: X = P + t \cdot \vec{g} \quad \text{where} \quad t \in \mathbb{R} \]

Equation of a line \(g \) in \(\mathbb{R}^2 \)
the explicit equation of a line:
\[g: y = m \cdot x + c \quad \text{where} \quad m = \tan(\alpha) \]
a general equation of a line:
\[g: a \cdot x + b \cdot y = c \]
a normal vector representation:
\[g: \vec{n} \cdot X = \vec{n} \cdot P \]
\[\vec{n} \parallel \begin{pmatrix} a \\ b \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

11 Rates of Change

For a real function \(f \) defined over an interval \([a, b]\):

Absolute change of \(f \) in \([a, b]\)
\[f(b) - f(a) \]

Relative (percentage) change of \(f \) in \([a, b]\)
\[\frac{f(b) - f(a)}{f(a)} \quad \text{where} \quad f(a) \neq 0 \]

Difference quotient (average rate of change) of \(f \) in \([a, b]\) or \([x, x + \Delta x]\)
\[\frac{f(b) - f(a)}{b - a} \quad \text{or} \quad \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad \text{where} \quad b = a \quad \text{and} \quad \Delta x \neq 0 \]

Differential quotient (instantaneous rate of change) of \(f \) at the point \(x \)
\[f'(x) = \lim_{x \to x} \frac{f(x_i) - f(x)}{x_i - x} \quad \text{or} \quad f'(x) = \lim_{x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]
12 Differentiation and Integration

\[f, g, h \ldots \text{functions that are differentiable over } \mathbb{R} \text{ or over a defined interval} \]

\[f' \ldots \text{first derivative of } f \]
\[g' \ldots \text{first derivative of } g \]
\[h' \ldots \text{first derivative of } h \]
\[C, k, q \in \mathbb{R}; a \in \mathbb{R} \setminus \{1\} \]

Indefinite integral
\[\int f(x) \, dx = F(x) + C \quad \text{where } F' = f \]

Definite integral
\[\int_a^b f(x) \, dx = F(b) - F(a) \]

Function	Derivative	Antiderivative
\(f(x) = k \) | \(f'(x) = 0 \) | \(F(x) = k \cdot x \)
\(f(x) = x^q \) | \(f'(x) = q \cdot x^{q-1} \) | \(F(x) = \frac{x^{q+1}}{q+1} \quad \text{where } q \neq -1 \)
\(f(x) = e^x \) | \(f'(x) = e^x \) | \(F(x) = e^x \)
\(f(x) = a^x \) | \(f'(x) = \ln(a) \cdot a^x \) | \(F(x) = \frac{a^x}{\ln(a)} \)
\(f(x) = \sin(x) \) | \(f'(x) = \cos(x) \) | \(F(x) = -\cos(x) \)
\(f(x) = \cos(x) \) | \(f'(x) = -\sin(x) \) | \(F(x) = \sin(x) \)
\(g(x) = k \cdot f(x) \) | \(g'(x) = k \cdot f'(x) \) | \(G(x) = k \cdot F(x) \)
\(h(x) = f(x) \pm g(x) \) | \(h'(x) = f'(x) \pm g'(x) \) | \(H(x) = F(x) \pm G(x) \)
\(g(x) = f(k \cdot x) \) | \(g'(x) = k \cdot f'(k \cdot x) \) | \(G(x) = \frac{1}{k} \cdot F(k \cdot x) \)

13 Statistics

\(x_1, x_2, \ldots, x_n \ldots \text{a list of } n \text{ real numbers} \)
\(x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)} \ldots \text{ordered list of } n \text{ values} \)

Arithmetic mean
\[\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \]

Median
\[\bar{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{... when } n \text{ is odd} \\ \frac{1}{2} \cdot \left(x_{\left[\frac{n}{2} \right]} + x_{\left[\frac{n}{2} + 1 \right]} \right) & \text{... when } n \text{ is even} \end{cases} \]

Measures of spread

\(s^2 \ldots \text{(empirical) variance of a sample} \)
\(s \ldots \text{(empirical) standard deviation of a sample} \)

\[s^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2 \]
\[s = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2} \]

If the variance of a population should be estimated using a sample of size \(n \):

\[s_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2 \]
14 Probability

\[n \in \mathbb{N}\setminus\{0\}; \, k \in \mathbb{N} \text{ where } k \leq n \]

A, B ... events

\(\neg A \) or \(\bar{A} \) ... complementary event of A

A \land B \text{ or } A \cap B \text{ ... A and B (the event A and the event B both occur)}

A \lor B \text{ or } A \cup B \text{ ... A or B (at least one of the two events A or B occurs)}

\(P(A) \) ... probability of event A occurring

\(P(A \mid B) \) ... probability of event A occurring given that B has occurred (conditional probability)

<table>
<thead>
<tr>
<th>Factorial</th>
<th>Binomial coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n! = n \cdot (n-1) \cdot ... \cdot 1)</td>
<td>(\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!})</td>
</tr>
</tbody>
</table>

Probability for a Laplace experiment

\(P(A) = \frac{\text{number of successful outcomes for } A}{\text{number of possible outcomes}} \)

Elementary rules

\[P(\neg A) = 1 - P(A) \]
\[P(A \land B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B) \]
\[P(A \land B) = P(A) \cdot P(B) \text{ ... if A and B are (stochastically) independent of one another} \]
\[P(A \lor B) = P(A) + P(B) - P(A \land B) \]
\[P(A \lor B) = P(A) + P(B) \text{ ... if A and B are mutually exclusive} \]

Expectation value \(\mu \) of a discrete random variable \(X \) with values \(x_1, x_2, \ldots, x_n \)

\[\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \ldots + x_n \cdot P(X = x_n) = \sum_{i=1}^{n} x_i \cdot P(X = x_i) \]

Variance \(\sigma^2 \) of a discrete random variable \(X \) with values \(x_1, x_2, \ldots, x_n \)

\[\sigma^2 = V(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i) \]

Standard deviation \(\sigma \)

\[\sigma = \sqrt{V(X)} \]

Binomial distribution

\[n \in \mathbb{N}\setminus\{0\}; \, k \in \mathbb{N}; \, p \in \mathbb{R} \text{ where } k \leq n \text{ and } 0 \leq p \leq 1 \]

The random variable \(X \) is binomially distributed with parameters \(n \) and \(p \)

\[P(X = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \]
\[E(X) = \mu = n \cdot p \]
\[V(X) = \sigma^2 = n \cdot p \cdot (1-p) \]
Normal distribution

\(\mu, \sigma \in \mathbb{R} \) where \(\sigma > 0 \)

\(f \ldots \) probability density function

\(\varphi \ldots \) probability density function of the standard normal distribution

\(\phi \ldots \) cumulative density function of the standard normal distribution

Normal distribution \(N(\mu; \sigma^2) \): The random variable \(X \) is normally distributed with expectation value \((\mu) \), standard deviation \((\sigma) \) and variance \((\sigma^2) \)

\[
P(X \leq x) = \int_{-\infty}^{x} f(x) \, dx = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{(x-\mu)^2}{2 \sigma^2}} \, dx
\]

Probabilities for standard deviation bands

\[
P(\mu - \sigma \leq X \leq \mu + \sigma) \approx 0.683
\]

\[
P(\mu - 2 \cdot \sigma \leq X \leq \mu + 2 \cdot \sigma) \approx 0.954
\]

\[
P(\mu - 3 \cdot \sigma \leq X \leq \mu + 3 \cdot \sigma) \approx 0.997
\]

Standard normal distribution \(N(0, 1) \)

\[
z = \frac{x - \mu}{\sigma}
\]

\[
\phi(z) = P(Z \leq z) = \int_{-\infty}^{z} \varphi(x) \, dx = \frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^2}{2}} \, dx
\]

\[
\phi(-z) = 1 - \phi(z)
\]

\[
P(-z \leq Z \leq z) = 2 \cdot \phi(z) - 1
\]

<table>
<thead>
<tr>
<th>Probability</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 %</td>
<td>1.645</td>
</tr>
<tr>
<td>95 %</td>
<td>1.960</td>
</tr>
<tr>
<td>99 %</td>
<td>2.576</td>
</tr>
</tbody>
</table>

Confidence interval

\(h \ldots \) relative frequency in a sample

\(p \ldots \) unknown relative proportion of the population

\(\gamma \ldots \) confidence level

\(\gamma \)-confidence interval for \(p \) (the values of \(p \) for which the value \(h \) is contained in the given range with probability \(\gamma \)):

\[
\left[h - z \cdot \sqrt{\frac{h \cdot (1-h)}{n}} ; h + z \cdot \sqrt{\frac{h \cdot (1-h)}{n}} \right], \text{ where for } z: \gamma = 2 \cdot \phi(z) - 1
\]
15 Units of Measurement

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Symbol</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>degrees Celsius</td>
<td>°C</td>
<td>$\Delta t = \Delta T$</td>
</tr>
<tr>
<td></td>
<td>or kelvin</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>$1 \text{ Hz} = 1 \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Energy, work done,</td>
<td>joules</td>
<td>J</td>
<td>$1 \text{ J} = 1 \text{ kg} \cdot \text{ m}^2 \cdot \text{ s}^{-2}$</td>
</tr>
<tr>
<td>amount of heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>newtons</td>
<td>N</td>
<td>$1 \text{ N} = 1 \text{ kg} \cdot \text{ m} \cdot \text{ s}^{-2}$</td>
</tr>
<tr>
<td>Torque</td>
<td>newton metres</td>
<td>N \cdot m</td>
<td>$1 \text{ N} \cdot \text{ m} = 1 \text{ kg} \cdot \text{ m}^2 \cdot \text{ s}^{-2}$</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohms</td>
<td>Ω</td>
<td>$1 \Omega = 1 \text{ V} \cdot \text{ A}^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 1 \text{ kg} \cdot \text{ m}^2 \cdot \text{ A}^{-2} \cdot \text{ s}^{-3}$</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascals</td>
<td>Pa</td>
<td>$1 \text{ Pa} = 1 \text{ N} \cdot \text{ m}^{-2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 1 \text{ kg} \cdot \text{ m}^{-1} \cdot \text{ s}^{-2}$</td>
</tr>
<tr>
<td>Electric current</td>
<td>amperes</td>
<td>A</td>
<td>$1 \text{ A} = 1 \text{ C} \cdot \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Potential difference</td>
<td>volts</td>
<td>V</td>
<td>$1 \text{ V} = 1 \cdot \text{ J} \cdot \text{ C}^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 1 \text{ kg} \cdot \text{ m}^2 \cdot \text{ A}^{-1} \cdot \text{ s}^{-3}$</td>
</tr>
<tr>
<td>Power</td>
<td>watts</td>
<td>W</td>
<td>$1 \text{ W} = 1 \text{ J} \cdot \text{ s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= 1 \text{ kg} \cdot \text{ m}^2 \cdot \text{ s}^{-3}$</td>
</tr>
</tbody>
</table>
16 Physical Quantities and Definitions

Density
\[\varrho = \frac{m}{V} \]

Power
\[P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t} \quad P = \frac{dW}{dt} \]

Force
\[F = m \cdot a \]

Work done
\[W = F \cdot s \]
\[W = \int F(s) \, ds \quad F = \frac{dW}{ds} \]

Kinetic energy
\[E_{\text{kin}} = \frac{1}{2} \cdot m \cdot v^2 \]

Potential energy
\[E_{\text{pot}} = m \cdot g \cdot h \]

Uniform linear motion
\[v = \frac{s}{t} \quad v = \frac{ds}{dt} \quad v(t) = s'(t) \]

Uniform acceleration
\[v = a \cdot t + v_0 \quad a = \frac{dv}{dt} = \frac{d^2s}{dt^2} \quad a(t) = v'(t) = s''(t) \]

17 Financial Mathematics

Compound interest calculation
\[K_0 \quad \text{initial investment} \]
\[K_n \quad \text{final capital} \]
\[p \quad \text{annual percentage rate of interest} \]
\[K_n = K_0 \cdot (1 + i)^n \quad \text{where} \quad i = \frac{p}{100} \]

Cost-of-production theory of value
\[x \quad \text{amount produced, offered, required or sold} \quad (x \geq 0) \]

Variable costs	\(K_v(x) \)
Fixed costs	\(K_f \)
(Total) costs	\(K(x) = K_v(x) + K_f \)
Marginal costs	\(K'(x) \)
Demand price	\(p(x) \)
Revenue/income	\(E(x) = p(x) \cdot x \)
Marginal revenue	\(E'(x) \)
Profit	\(G(x) = E(x) - K(x) \)
Marginal profit	\(G'(x) \)
Break-even point	\(E(x) = K(x) \quad \text{at the (first) zero of the profit function} \)
Index

A
absolute change 8
absolute value of a vector 7
adjacent side 6
amperes 12
angle 6
angle between vectors 7
angle of slope of a line 8
annual percentage rate of interest 13
antiderivative 9
arc length 5
area 5
area of the base 6
arithmetic mean 9
average rate of change 8

B
binomial coefficient 10
binomial distribution 10
binomial formulae 4
break-even point 13

calculation rules 4
Celsius 12
centi- 3
circle 5
common logarithm 4
complementary event 10
complex numbers 3
compound interest 13
conditional probability 10
cone 6
certainty interval 11
certainty level 11
cosine 6
cost-of-production theory of value 13
costs 13
current 12
cylinder 6

deca- 3
deci- 3
definite integral 9
degrees (unit of measurement for angles) 6
degrees Celsius 12
demand price 13
density 13
density function 11
derivative 9
difference 3
difference quotient 8
differential quotient 8
differentiation 9
direction vector 8
discrete random variable 10
distribution function 11

E
electric current 12
electric resistance 12
element 3
empirical standard deviation 9
empirical variance 9
empty set 3
energy 12, 13
equation of a line 8
events 10
expectation value 10
exponent 3

F
factorial 10
final capital 13
financial mathematics 13
fixed costs 13
force 12, 13
frequency 12

G
general triangle 5
giga- 3
gradient 8

H
heat 12
hecto- 3
Heron’s formula 5
hertz 12
hypotenuse 5

I
income 13
indefinite integral 9
initial investment 13
instantaneous rate of change 8
integers 3
integral 9
intersection (of sets) 3

J
joules 12

K
kelvin 12
kilo- 3
kinetic energy 13
kite 5

L
Laplace experiment 10
lateral surface area 10
length of a vector 7
linear factorisation 4
logarithms 4

M
marginal costs 13
marginal profit 13
marginal revenue 13
mean 9
measures of spread 9
median 9
mega- 3
micro- 3
milli- 3

N
nano- 3
natural logarithm 4
natural numbers 3
newton metres 12
newtons 12
normal distribution 8
normal vector representation of a line 8

O
ohms 12
opposite side 6

P
parallel vectors 7
parallelogram 5
pascals 12
percentage change 8
perimeter 5, 6
perpendicular vectors 7, 8
physical quantities 13
pico- 3
potential difference 12
potential energy 13
power 12, 13
powers 3
prefixes 3
pressure 12
prism 6
probability 10
probability density function 11
profit 13
proper subset 3
pyramid 6
Pythagorean theorem 5
| Q | quadratic equations 4
| | quadrilateral 5 |
| R | radians 6
| | random variable 10
| | rates of change 8
| | rational numbers 3
| | real numbers 3
| | rectangle 5
| | relative change 8
| | relative frequency 11
| | resistance 12
| | revenue 13
| | rhombus 5
| | right-angled triangle 5, 6
| | roots 3 |
| S | sample 9
| | scalar product 7
| | sector of a circle 5
| | sets 3
| | sets of numbers 3
| | side of a triangle 5
| | sine 6
| | solids 6
| | sphere 6
| | square 5
| | standard deviation 9, 10
| | standard deviation bands 11
| | standard normal distribution 11
| | statistics 9
| | straight lines 8
| | subset 3
| | surface area 6 |
| T | tangent 6
| | temperature 12
| | tera- 3
| | torque 12
| | total costs 13
| | trapezium 5
| | triangle 5
| | trigonometry 6, 7
| | two-dimensional shapes 5 |
| U | uniform acceleration 13
| | uniform linear motion 13
| | union (of sets) 3
| | unit circle 7
| | units 12
| | units of measurement 12 |
| V | variable costs 13
| | variance 9, 10
| | vector equation of a line 8
| | vectors 7
| | Vieta’s theorem 4
| | volts 12
| | volume 6 |
| W | watts 12
| | work done 12, 13 |