Standardised Competence-Oriented Written School-Leaving Examination/ School-Leaving and Diploma Examination

Formula Booklet

Mathematics (AHS) Applied Mathematics (BHS) Higher Education Entrance Examination

Bundesministerium Bildung, Wissenschaft und Forschung

Version as of 1st December 2022

Table of Contents

Chapter		Page
1	Sets	3
2	Prefixes	3
3	Powers	3
4	Logarithms	4
5	Quadratic Equations	4
6	Two-Dimensional Shapes	5
7	Solids	6
8	Trigonometry	7
9	Complex Numbers	8
10	Vectors	8
11	Straight Lines	9
12	Matrices	10
13	Sequences and Series	11
14	Rates of Change	11
15	Growth and Decay Processes	12
16	Differentiation and Integration	13
17	1 st Order Differential Equations	14
18	Statistics	15
19	Probability	16
20	Linear Regression	18
21	Financial Mathematics	19
22	Investments	20
23	Cost-of-Production and Theory of Value	21
24	Technical and Scientific Basics	22
	Index	23

.....

1 Sets

€	is an element of
¢	is not an element of
\cap	intersection
U	union
C	proper subset
S	subset
\setminus	difference ("without")
{ }	empty set
•	

Sets of numbers

ℕ = {0, 1, 2,}	natural numbers
Z	integers
\mathbb{Q}	rational numbers
R	real numbers
C	complex numbers
\mathbb{R}^+ or \mathbb{R}^-	positive or negative real numbers
\mathbb{R}^+_0 or \mathbb{R}^0	positive or negative real numbers including zero

2 Prefixes

tera-	Т	10 ¹²	deci-	d	1 0 ⁻¹
giga-	G	10 ⁹	centi-	С	10 ⁻²
mega-	Μ	10 ⁶	milli-	m	10 ⁻³
kilo-	k	10 ³	micro-	μ	10 ⁻⁶
hecto-	h	10 ²	nano-	n	10 ⁻⁹
deca-	da	10 ¹	pico-	р	10 ⁻¹²

3 Powers

Powers with integer exponents

 $a \in \mathbb{R}; n \in \mathbb{N} \setminus \{0\}$

 $a \in \mathbb{R} \setminus \{0\}; n \in \mathbb{N} \setminus \{0\}$

 $a^{n} = \underbrace{a \cdot a \cdot \dots \cdot a}_{a^{n}} \qquad a^{1} = a \qquad a^{-n} = \frac{1}{a^{n}} = \left(\frac{1}{a}\right)^{n} \qquad a^{-1} = \frac{1}{a} \qquad a^{0} = 1$

n factors

Powers with rational exponents (roots)

 $a, b \in \mathbb{R}_0^+; n, k \in \mathbb{N} \setminus \{0\}$ where $n \ge 2$ $a = \sqrt[n]{b} \iff a^n = b$ $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{k}{n}} = \sqrt[n]{a^k}$ $a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}}$ where a > 0

Calculation rules

 $a, b \in \mathbb{R} \setminus \{0\}; r, s \in \mathbb{Z}$ or $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$ $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$

$$a^{r} \cdot a^{s} = a^{r+s}$$

$$\frac{a^{r}}{a^{s}} = a^{r-s}$$

$$(a^{r})^{s} = a^{r\cdot s}$$

$$(a^{r})^{s} = a^{r\cdot s}$$

$$(a \cdot b)^{r} = a^{r} \cdot b^{r}$$

$$\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}}$$

$$n\sqrt{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a}$$

Binomial formulae

 $a, b \in \mathbb{R}; n \in \mathbb{N}$

$$(a + b)^{2} = a^{2} + 2 \cdot a \cdot b + b^{2}$$
$$(a - b)^{2} = a^{2} - 2 \cdot a \cdot b + b^{2}$$
$$(a + b) \cdot (a - b) = a^{2} - b^{2}$$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$ $(a-b)^n = \sum_{k=0}^n (-1)^k \cdot \binom{n}{k} \cdot a^{n-k} \cdot b^k$

4 Logarithms

$$a, b, c \in \mathbb{R}^{+} \text{ where } a \neq 1; x, r \in \mathbb{R}$$

$$x = \log_{a}(b) \iff a^{x} = b$$

$$\log_{a}(b \cdot c) = \log_{a}(b) + \log_{a}(c) \qquad \log_{a}\left(\frac{b}{c}\right) = \log_{a}(b) - \log_{a}(c) \qquad \log_{a}(b^{r}) = r \cdot \log_{a}(b)$$

$$\log_{a}(a^{x}) = x \qquad \log_{a}(a) = 1 \qquad \log_{a}(1) = 0 \qquad \log_{a}\left(\frac{1}{a}\right) = -1 \qquad a^{\log_{a}(b)} = b$$

natural logarithm (logarithm with base *e*): $\ln(b) = \log_e(b)$ common logarithm (logarithm with base 10): $\lg(b) = \log_{10}(b)$

5 Quadratic Equations

$$p, q \in \mathbb{R}$$
 $a, b, c \in \mathbb{R}$ where $a \neq 0$

$$x^{2} + p \cdot x + q = 0$$

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$a \cdot x^{2} + b \cdot x + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}$$

Vieta's Theorem x_1 and x_2 are the solutions to the equation $x^2 + p \cdot x + q = 0$ if and only if: $x_1 + x_2 = -p$ $x_1 \cdot x_2 = q$

Linear factorisation $x^2 + p \cdot x + q = (x - x_1) \cdot (x - x_2)$

6 Two-Dimensional Shapes

A ... area

u ... perimeter

u = a + b + c + d

Triangle

Right-angled triangle with hypotenuse c General triangle and sides a, b $A = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$ $A = \frac{a \cdot b}{2} = \frac{c \cdot h_c}{2}$ u = a + b + c $h_c^2 = p \cdot q$ $a^2 = c \cdot p$ $b^2 = c \cdot a$ С Heron's Formula Pythagorean theorem $A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)}$ where $s = \frac{a + b + c}{2}$ $a^2 + b^2 = c^2$ Similarity and the Intercept Theorem Equilateral triangle $A = \frac{a^2}{4} \cdot \sqrt{3} = \frac{a \cdot h}{2}$ $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$ $h = \frac{a}{2} \cdot \sqrt{3}$ 60 60 C. Quadrilateral а а Square Rectangle $A = a^2$ $A = a \cdot b$ b $u = 2 \cdot a + 2 \cdot b$ $u = 4 \cdot a$ а а Rhombus Parallelogram а $A = a \cdot h_a = \frac{e \cdot f}{2}$ $A = a \cdot h_a = b \cdot h_b$ $u = 2 \cdot a + 2 \cdot b$ $u = 4 \cdot a$ а а С Trapezium Kite $A = \frac{(a+c)\cdot h}{2}$ $A = \frac{e \cdot f}{2}$

а

 $u = 2 \cdot a + 2 \cdot b$

Circle

7 Solids

- V... volume
- O ... surface area
- G ... area of the base

Prism

Cuboid

 $V = a \cdot b \cdot c$ $O = 2 \cdot (a \cdot b + a \cdot c + b \cdot c) \quad c$

Pyramid

 $V = \frac{G \cdot h}{3}$ O = G + M

Sphere

Arc length and sector of a circle

M ... lateral surface area $u_{\rm G}$... perimeter of the base

Cylinder

Cube

Cone

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$$
$$M = \pi \cdot r \cdot s$$
$$O = \pi \cdot r^2 + \pi \cdot r \cdot s$$
$$s = \sqrt{h^2 + r^2}$$

8 Trigonometry

Converting between degrees and radians

Right-angled triangle trigonometry

Sine: $sin(\alpha) = \frac{side \text{ opposite to } \alpha}{hypotenuse}$ Cosine: $cos(\alpha) = \frac{side \text{ adjacent to } \alpha}{hypotenuse}$ Tangent: $tan(\alpha) = \frac{side \text{ opposite to } \alpha}{side \text{ adjacent to } \alpha}$

Unit circle trigonometry

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$
$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \quad \text{for} \quad \cos(\alpha) \neq 0$$

С

Trigonometry in general triangles

Sine Rule: $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$ Cosine Rule: $a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos(\alpha)$ $b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot \cos(\beta)$ $c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos(\gamma)$

Trigonometric formula for the area of a triangle

$$A = \frac{1}{2} \cdot b \cdot c \cdot \sin(\alpha) = \frac{1}{2} \cdot a \cdot c \cdot \sin(\beta) = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma)$$

General sine function (in terms of time *t*)

A ... amplitude ω ... angular frequency φ ... zero phase angle

$$y(t) = A \cdot \sin(\omega \cdot t + \varphi)$$
$$T = \frac{2 \cdot \pi}{\omega} = \frac{1}{f}$$
$$t_0 = -\frac{\varphi}{\omega}$$

T ... oscillation period (period length) *f* ... frequency

9 Complex Numbers

j or i ... imaginary unit with $j^2 = -1$ or $i^2 = -1$ a ... real part, $a \in \mathbb{R}$ b ... imaginary part, $b \in \mathbb{R}$

Cartesian form

 $z = a + b \cdot j$

10 Vectors

P, Q ... points

Vectors in \mathbb{R}^2

Arrow from *P* to *Q*: $P = (p_1, p_2), Q = (q_1, q_2)$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$$

Calculation rules in \mathbb{R}^2

 $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \end{pmatrix}$

 $k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix}$ where $k \in \mathbb{R}$

Scalar product in \mathbb{R}^2

 $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$

Absolute value (length) of a vector in \mathbb{R}^2 $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

 \vec{n} , a vector perpendicular to $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in \mathbb{R}^2 $\vec{n} = k \cdot \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$ for $|\vec{a}| \neq 0$ and $k \in \mathbb{R} \setminus \{0\}$ $r \dots$ modulus, $r \in \mathbb{R}_0^+$ $\varphi \dots$ argument, $\varphi \in \mathbb{R}$

Polar forms

 $z = r \cdot [\cos(\varphi) + j \cdot \sin(\varphi)] = r \cdot e^{j \cdot \varphi} = (r; \varphi) = r /\varphi$

Conversions

 $a = r \cdot \cos(\varphi) \qquad r = \sqrt{a^2 + b^2} \\ b = r \cdot \sin(\varphi) \qquad \tan(\varphi) = \frac{b}{a}$

Vectors in \mathbb{R}^n

Arrow from P to Q: $P = (p_1, p_2, \dots, p_n), Q = (q_1, q_2, \dots, q_n)$ $\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ \vdots \\ q_n - p_n \end{pmatrix}$

Calculation rules in \mathbb{R}^n

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$
$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \\ \vdots \\ k \cdot a_n \end{pmatrix} \quad \text{where} \quad k \in \mathbb{R}$$

Scalar product in \mathbb{R}^n

 $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$ Absolute value (length) of a vector in \mathbb{R}^n $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ Criterion for two vectors to be perpendicular in \mathbb{R}^2 and \mathbb{R}^3

 $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$ for $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$

Criterion for two vectors to be parallel in \mathbb{R}^2 and \mathbb{R}^3

 $\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b}$ for $|\vec{a}| \neq 0, |\vec{b}| \neq 0$ and $k \in \mathbb{R} \setminus \{0\}$

Angle φ between \vec{a} and \vec{b} in \mathbb{R}^2 and \mathbb{R}^3

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \quad \text{for} \quad |\vec{a}| \neq 0 \text{ and } |\vec{b}| \neq 0$$

Unit vector \vec{a}_0 in the direction of \vec{a}

$$\vec{a}_0 = \frac{1}{|\vec{a}|} \cdot \vec{a}$$
 for $|\vec{a}| \neq 0$

Vector product in \mathbb{R}^3

 $\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$

11 Straight Lines

<i>g</i> line	\overrightarrow{g} a direction vector for the line g \overrightarrow{n} a vector perpendicular to the line g
	X, P points on the line g
	$m \dots$ gradient of the line g
	lpha angle of slope of the line g
	$a, b, c, d, m \in \mathbb{R}$

Vector equation of a line g in \mathbb{R}^2 and \mathbb{R}^3

 $g: X = P + t \cdot \overrightarrow{g}$ where $t \in \mathbb{R}$

Equation of a line g in \mathbb{R}^2

the explicit equation of a line:	g: $y = m \cdot x + c$	where	m = tan(α)	
a general equation of a line: a normal vector representation:	g: $a \cdot x + b \cdot y = d$ g: $\vec{n} \cdot X = \vec{n} \cdot P$	where	$\vec{n} \parallel \begin{pmatrix} a \\ b \end{pmatrix}$	for	$\begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

12 Matrices

 $a_{ij}, b_{ij} \in \mathbb{R}; i, j, m, n, p \in \mathbb{N} \setminus \{0\}; k \in \mathbb{R}$

Addition/subtraction of matricesMultiplication of a matrix by a number k				
$= \begin{pmatrix} a_{11} \pm b_{11} \cdots a_{1n} \pm b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} \cdots & a_{mn} \pm b_{mn} \end{pmatrix}$	$k \cdot \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} k \cdot a_{11} \cdots k \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ k \cdot a_{m1} \cdots k \cdot a_{mn} \end{pmatrix}$			
B <i>p</i> × <i>n</i> -matrix	$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \dots m \times n$ -matrix			
$ \begin{pmatrix} a_{11} \cdots a_{1p} \\ \vdots & \ddots & \vdots \\ a_{i1} \cdots & a_{ip} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mp} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots \\ b_{p1} \cdots & b_{pj} & \cdots & b_{pn} \end{pmatrix} = \begin{pmatrix} c_{11} \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & & \vdots & & \vdots \\ c_{m1} \cdots & c_{mj} & \cdots & c_{mn} \end{pmatrix} $ where $c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{ip} \cdot b_{pj}$				
Transposed matrix A^{T}	Inverse matrix A^{-1} of a square matrix A			
$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$ $\mathbf{A}^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$	$\boldsymbol{A} \cdot \boldsymbol{A}^{-1} = \boldsymbol{A}^{-1} \cdot \boldsymbol{A} = \boldsymbol{I}$			
	$= \begin{pmatrix} a_{11} \pm b_{11} \cdots a_{1n} \pm b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} \cdots & a_{mn} \pm b_{mn} \end{pmatrix}$ $B \dots p \times n \text{-matrix}$ $\begin{pmatrix} b_{1n} \\ \vdots \\ b_{pn} \end{pmatrix} = \begin{pmatrix} c_{11} \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & & \vdots \\ c_{n1} \cdots & c_{nj} & \cdots & c_{in} \\ \vdots & & & \vdots & & \vdots \\ c_{m1} \cdots & c_{mj} & \cdots & c_{mn} \end{pmatrix} \text{ where}$ $Transposed matrix A^{T}$			

Systems of linear equations in matrix notation (n equations with n unknowns)

$ \begin{array}{c} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ \dots \\ a_{n1} \cdot x_1 + a_{n2} \cdot x_2 + \dots + a_{nn} \cdot x_n = b_n \end{array} \qquad $
$a_{21} a_{1} + a_{22} a_{2} + \dots + a_{2n} a_{n} - b_{2}$
$\begin{array}{c} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot a_{12} \cdot \dots \cdot a_{1n} \\ a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot a_{12} \cdot \dots \cdot a_{1n} \\ a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot a_{12} \cdot \dots \cdot a_{1n} \\ a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot a_{12} \cdot \dots \cdot a_{1n} \\ a_{1n} \cdot x_n = b_1 \\ a_{11} \cdot a_{12} \cdot \dots \cdot a_{1n} \\ a_{1n} \cdot x_n = b_1 \\ a_{1n} \cdot x$

If the inverse matrix \mathbf{A}^{-1} exists, then $\vec{x} = \mathbf{A}^{-1} \cdot \vec{b}$ holds

Manufacturing processes

\overrightarrow{A} square material consumption matrix \overrightarrow{x} production vector		\vec{h} identity matrix \vec{n} demand vector
$\vec{x} = \mathbf{A} \cdot \vec{x} + \vec{n}$	$\overrightarrow{x} = (I - A)^{-1} \cdot \overrightarrow{n}$	$\overrightarrow{n} = (I - A) \cdot \overrightarrow{x}$

13 Sequences and Series

Arithmetic sequence

 $(a_n) = (a_1, a_2, a_3, \ldots)$

 $d = a_{n+1} - a_n$

Recursive rule $a_{n+1} = a_n + d$ with a_1 given

Explicit rule

 $a_n = a_1 + (n-1) \cdot d$

Finite arithmetic series

Sum s_n of the first *n* terms

 $S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_{n-1} + a_n$ $S_n = \frac{n}{2} \cdot (a_1 + a_n) = \frac{n}{2} \cdot [2 \cdot a_1 + (n-1) \cdot d]$

Geometric sequence

 $(b_n) = (b_1, b_2, b_3, \ldots)$

$$q = \frac{b_{n+1}}{b_n}$$

Recursive rule

 $b_{n+1} = b_n \cdot q$ with b_1 given

Explicit rule

 $b_n = b_1 \cdot q^{n-1}$

Finite geometric series

Sum s_n of the first *n* terms

 $s_n = \sum_{i=1}^n b_i = b_1 + b_2 + \dots + b_{n-1} + b_n$ $s_n = b_1 \cdot \frac{q^n - 1}{q - 1} \text{ for } q \neq 1$

Infinite geometric series

 $\sum_{n=1}^{\infty} b_n \text{ is convergent if and only if} |q| < 1$ $s = \lim_{n \to \infty} s_n = \frac{b_1}{1 - q} \text{ for } |q| < 1$

14 Rates of Change

For a real function f defined over an interval [a, b]:

Absolute change of f in [a, b]

f(b) - f(a)

Relative (percentage) change of f in [a, b]

 $\frac{f(b) - f(a)}{f(a)} \quad \text{for} \quad f(a) \neq 0$

Difference quotient (average rate of change) of *f* in [*a*, *b*] or in [*x*, $x + \Delta x$]

$$\frac{f(b) - f(a)}{b - a} \text{ or } \frac{f(x + \Delta x) - f(x)}{\Delta x} \text{ for } b \neq a \text{ or } \Delta x \neq 0$$

Differential quotient (instantaneous rate of change) of f at the point x

 $f'(x) = \lim_{x_1 \to x} \frac{f(x_1) - f(x)}{x_1 - x}$ or $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

15 Growth and Decay Processes

t	 time

N(t) ... amount at time t $N_0 = N(0)$... amount at time t = 0

Linear

$k \in \mathbb{R}^+$	
linear growth	$N(t) = N_0 + k \cdot t$
linear decay	$N(t) = N_0 - k \cdot t$

Exponential

$a, \lambda \in \mathbb{R}^+$ where $a \neq 1$ and $N_0 > 0$ $a \dots$ growth factor				
exponential growth	$N(t) = N_0 \cdot a^t$ for $a > 1$	$N(t) = N_0 \cdot e^{\lambda \cdot t}$		
exponential decay	$N(t) = N_0 \cdot a^t$ for $0 < a < 1$	$N(t) = N_0 \cdot e^{-\lambda \cdot t}$		

Limited

S, a, $\lambda \in \mathbb{R}^+$ where $0 < a < 1$ S saturation value, carrying		
limited growth (saturation function)	$N(t) = S - b \cdot a^{t}$ where $b = S - N_{0}$	$N(t) = S - b \cdot e^{-\lambda \cdot t}$ where $b = S - N_0$
limited decay	$N(t) = S + b \cdot a^{t}$ where $b = S - N_0 $	$N(t) = S + b \cdot e^{-\lambda \cdot t}$ where $b = S - N_0 $

Logistic

S, $a, \lambda \in \mathbb{R}^+$ where 0 < a < 1 and $N_0 > 0$ S ... saturation value, carrying capacity

logistic growth

$$N(t) = \frac{S}{1 + c \cdot a^{t}} \qquad N(t) = \frac{S}{1 + c \cdot e^{-\lambda \cdot t}}$$

where $c = \frac{S - N_{0}}{N_{0}}$ where $c = \frac{S - N_{0}}{N_{0}}$

16 Differentiation and Integration

f, g, h ... functions that are differentiable over $\mathbb R$ or over a defined interval

 $f', g', h' \dots$ derivative functions $F, G, H \dots$ antiderivatives $C, k, q \in \mathbb{R}; a \in \mathbb{R}^+ \setminus \{1\}$

Indefinite integral

 $\int f(x) dx = F(x) + C \quad \text{where} \quad F' = f$

Definite integral $\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$

Function	Derivative	Antiderivative
f(x) = k	f'(x) = 0	$F(x) = k \cdot x$
$f(x) = x^q$	$f'(x) = q \cdot x^{q-1}$	$F(x) = \frac{x^{q+1}}{q+1} \text{for} q \neq -1$ $F(x) = \ln(x) \text{for} q = -1$
$f(x) = e^x$	$f'(x) = e^x$	$F(x) = e^x$
$f(x) = a^x$	$f'(x) = \ln(a) \cdot a^{x}$	$F(x) = \frac{a^x}{\ln(a)}$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$	$F(x) = x \cdot \ln(x) - x$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \cdot \ln(a)}$	$F(x) = \frac{1}{\ln(a)} \cdot (x \cdot \ln(x) - x)$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	$F(x) = \sin(x)$
$f(x) = \tan(x)$	$f'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$F(x) = -\ln(\cos(x))$
$g(x) = k \cdot f(x)$	$g'(x) = k \cdot f'(x)$	$G(x) = k \cdot F(x)$
$h(x) = f(x) \pm g(x)$	$h'(x) = f'(x) \pm g'(x)$	$H(x) = F(x) \pm G(x)$
$g(x) = f(k \cdot x)$	$g'(x) = k \cdot f'(k \cdot x)$	$G(x) = \frac{1}{k} \cdot F(k \cdot x)$

Differentiation rules

multiplication by a constant	$(k \cdot f)' = k \cdot f'$
sum rule	$(f \pm g)' = f' \pm g'$
product rule	$(f \cdot g)' = f' \cdot g + f \cdot g'$
quotient rule	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$ for $g(x) \neq 0$
chain rule	$h(x) = f(g(x)) \implies h'(x) = f'(g(x)) \cdot g'(x)$

Method for integration - linear substitution

$$\int f(a \cdot x + b) \, \mathrm{d}x = \frac{F(a \cdot x + b)}{a} + C$$

Volume V of solids of revolution

Rotation of the graph of a function f with y = f(x) about an axis

Rotation about the x-axis (
$$a \le x \le b$$
)Rotation about the y-axis ($c \le y \le d$) $V_x = \pi \cdot \int_a^b y^2 dx$ $V_y = \pi \cdot \int_c^d x^2 dy$

Arc length s of the graph of a function f in the interval [a, b]

 $s = \int_a^b \sqrt{1 + (f'(x))^2} \, \mathrm{d}x$

Mean *m* of a function *f* in the interval [*a*, *b*]

 $m = \frac{1}{b-a} \cdot \int_a^b f(x) \, \mathrm{d}x$

17 1st Order Differential Equations

Separable differential equations

 $y' = f(x) \cdot g(y)$ or $\frac{dy}{dx} = f(x) \cdot g(y)$ where y = y(x)

1st order linear differential equation with constant coefficients

y ... general solution of a nonhomogeneous differential equation y_h ... general solution of the homogeneous differential equation $y' + a \cdot y = 0$ y_p ... particular solution of the nonhomogeneous differential equation *s* ... interference function

 $y' + a \cdot y = s(x)$ where $a \in \mathbb{R}, y = y(x)$ $y = y_h + y_p$

18 Statistics

 $x_1, x_2, \dots, x_n \dots$ a list of *n* real numbers

for which k different values x_1, x_2, \dots, x_k occur.

 H_i ... absolute frequency of x_i with $H_1 + H_2 + ... + H_k = n$

Relative frequency h_i of x_i

$$h_i = \frac{H_i}{n}$$

Measures of central tendency

Arithmetic mean \overline{x}

 $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^n x_i$ $\overline{x} = \frac{x_1 \cdot H_1 + x_2 \cdot H_2 + \dots + x_k \cdot H_k}{n} = \frac{1}{n} \cdot \sum_{i=1}^k x_i \cdot H_i$

Median \tilde{x} for metric data

 $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)} \ldots$ ordered list of *n* values

$$\tilde{x} = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \dots \text{ when } n \text{ is odd} \\ \frac{1}{2} \cdot \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right) \dots \text{ when } n \text{ is even} \end{cases}$$

Quartiles

- q_1 : At least 25 % of the values are less than or equal to q_1 , and at least 75 % of the values are greater than or equal to q_1 .
- $q_2 = \tilde{x}$: At least 50 % of the values are less than or equal to q_2 , and at least 50 % of the values are greater than or equal to q_2 .
- q_3 : At least 75 % of the values are less than or equal to q_3 , and at least 25 % of the values are greater than or equal to q_3 .

Measures of spread

Range: $x_{max} - x_{min}$

Interquartile range: $q_3 - q_1$

 s^2 ... (empirical) variance of a sample

s ... (empirical) standard deviation of a sample

$$s^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$s^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \cdot H_{i}$$

$$s = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$s = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot H_{i}}$$

If the variance of a population should be estimated using a sample of size n.

$$S_{n-1}^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{n-1}^{2} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot H_{i}}$$

$$S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot H_{i}}$$

Geometric mean
$$\overline{x}_{geo}$$

 $\overline{x}_{geo} = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$ for $x_i > 0$

19 Probability

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}$ where $k \leq n$ A, B ... events \overline{A} or $\neg A$... complementary event of A $A \cap B$ or $A \wedge B \dots A$ and B (the event A and the event B both occur) $A \cup B$ or $A \lor B \dots A$ or B (at least one of the two events A or B occurs) P(A) ... probability of event A occurring P(A|B) ... probability of event A occurring given that event B has occurred (conditional probability) **Binomial coefficient** Factorial $1! = 1 \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ 0! = 1 $n! = n \cdot (n-1) \cdot \ldots \cdot 1$ Probability for a Laplace experiment $P(A) = \frac{\text{number of successful outcomes for } A}{\text{number of possible outcomes}}$ Elementary rules $P(\overline{A}) = 1 - P(A)$ or $P(\neg A) = 1 - P(A)$ $P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$ $P(A \land B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$ or If A and B are (stochastically) independent of one another: $P(A \land B) = P(A) \cdot P(B)$ $P(A \cap B) = P(A) \cdot P(B)$ or $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \lor B) = P(A) + P(B) - P(A \land B)$ or If A and B are mutually exclusive: $P(A \cup B) = P(A) + P(B)$ $P(A \lor B) = P(A) + P(B)$ or

Conditional probability of A given the condition B

 $P(A | B) = \frac{P(A \cap B)}{P(B)} \qquad \text{or} \qquad P(A | B) = \frac{P(A \wedge B)}{P(B)}$

Bayes' Theorem

$$P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)} = \frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A) + P(\overline{A}) \cdot P(B \mid \overline{A})}$$

or

 $P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)} = \frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A) + P(\neg A) \cdot P(B \mid \neg A)}$

Expectation value μ of a discrete random variable X with values x_1, x_2, \dots, x_n $\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots + x_n \cdot P(X = x_n) = \sum_{i=1}^n x_i \cdot P(X = x_i)$

Variance σ^2 of a discrete random variable *X* with values $x_1, x_2, ..., x_n$ $\sigma^2 = V(X) = \sum_{i=1}^n (x_i - \mu)^2 \cdot P(X = x_i)$

Standard deviation σ

 $\sigma = \sqrt{V(X)}$

Binomial distribution

 $n \in \mathbb{N}\setminus\{0\}; k \in \mathbb{N}; p \in \mathbb{R}$ where $k \le n$ and $0 \le p \le 1$

The random variable *X* is binomially distributed with parameters *n* and *p* $P(X = k) = {n \choose k} \cdot p^k \cdot (1 - p)^{n-k}$

Expectation value: $E(X) = \mu = n \cdot p$ Variance: $V(X) = \sigma^2 = n \cdot p \cdot (1 - p)$

Normal distribution

 $\mu, \sigma \in \mathbb{R}$ where $\sigma > 0$

f ... probability density function

 $F \dots$ cumulative distribution function

 φ ... probability density function of the standard normal distribution

 ϕ ... cumulative density function of the standard normal distribution

Normal distribution $N(\mu; \sigma^2)$: The random variable X is normally distributed with expectation value (μ), standard deviation (σ) and variance (σ^2)

$$P(X \le x_1) = F(x_1) = \int_{-\infty}^{x_1} f(x) \, dx = \int_{-\infty}^{x_1} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \left(\frac{x - \mu}{\sigma}\right)^2} \, dx$$

Probabilities for the empirical rule

$$\begin{split} P(\mu - \sigma &\leq X \leq \mu + \sigma) \approx 0.683 \\ P(\mu - 2 \cdot \sigma \leq X \leq \mu + 2 \cdot \sigma) \approx 0.954 \\ P(\mu - 3 \cdot \sigma \leq X \leq \mu + 3 \cdot \sigma) \approx 0.997 \end{split}$$

Standard normal distribution N(0, 1)

. .

$$z = \frac{x - \mu}{\sigma}$$

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(x) dx = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} dx$$

$$\phi(-z) = 1 - \phi(z)$$

$$P(-z \le Z \le z) = 2 \cdot \phi(z) - 1$$

$$\frac{P(-z \le Z \le z)}{z} = \frac{90\%}{z} = \frac{95\%}{z} = \frac{99\%}{z}$$

Prediction Intervals and Confidence Intervals

 $\begin{array}{ll} \mu, \sigma, \alpha \in \mathbb{R} & \text{where} \quad \sigma > 0 \ \text{and} \ 0 < \alpha < 1 \\ \overline{x} \dots \text{sample mean} \\ s_{n-1} \dots \text{sample standard deviation} \\ n \dots \text{sample size} \\ z_{1-\frac{\alpha}{2}} \dots \left(1-\frac{\alpha}{2}\right) \text{-quantile of the standard normal distribution} \\ t_{f;1-\frac{\alpha}{2}} \dots \left(1-\frac{\alpha}{2}\right) \text{-quantile of the } t \text{-distribution with } f \text{ degrees of freedom} \end{array}$

Two-sided $(1 - \alpha)$ -prediction interval for a single value of a normally distributed random variable

$$\left[\mu-Z_{1-\frac{\alpha}{2}}\cdot\sigma,\,\mu+Z_{1-\frac{\alpha}{2}}\cdot\sigma\right]$$

Two-sided $(1 - \alpha)$ -prediction interval for the sample mean of normally distributed values

$$\left[\mu - Z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \ \mu + Z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

Two-sided $(1 - \alpha)$ -confidence interval for the expectation value of a normally distributed random variable

known
$$\sigma$$
: $\left[\overline{x} - Z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{x} + Z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
unknown σ : $\left[\overline{x} - t_{f,1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}, \overline{x} + t_{f,1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}\right]$ where $f = n - 1$

20 Linear Regression

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \dots$ pairs of values $\overline{x}, \overline{y} \dots$ mean of x_i and y_i

linear regression function f with $f(x) = m \cdot x + c$ $m = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$

 $c = \overline{y} - m \cdot \overline{x}$

Pearson's correlation coefficient

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

21 Financial Mathematics

Compound interest calculation

 K_0 ... initial investment

 K_n ... final capital after *n* years

i ... annual percentage rate of interest

simple interest: $K_n = K_0 \cdot (1 + i \cdot n)$ compound interest: $K_n = K_0 \cdot (1 + i)^n$

Interest calculated during the year

<i>m</i> number of compounding periods per year	The following abbreviations are used for
	compounding periods:
	p.a per year
	p.s per semester
	p.q per quarter
	p.m per month

 $K_n = K_0 \cdot (1 + i_m)^{n \cdot m}$

interest rate applied during the year
$$i_m$$

 $i_m = \sqrt[m]{1+i} - 1$
equivalent interest rates
 $i = (1 + i_m)^m - 1$

Annuities

R ... amount paid per time period n ... number of payments i ... interest rate q = 1 + i ... accumulation factor

Requirement: annuity period = interest period

	ordinary annuity	annuity due
final value E	$E_{\text{ordinary}} = R \cdot \frac{q^n - 1}{q - 1}$	$E_{\rm due} = R \cdot \frac{q^n - 1}{q - 1} \cdot q$
present value B	$B_{\text{ordinary}} = R \cdot \frac{q^n - 1}{q - 1} \cdot \frac{1}{q^n}$	$B_{\rm due} = R \cdot \frac{q^n - 1}{q - 1} \cdot \frac{1}{q^{n-1}}$

Amortisation table

period	interest amount	repayment amount	annuity	residual debt
0				K _o
1	K _o · i	<i>T</i> ₁	$A_1 = K_0 \cdot i + T_1$	$K_1 = K_0 - T_1$

22 Investments

 E_t ... revenue in year t A_t ... expenses in year t A_0 ... acquisition costs R_t ... returns in year t

i ... imputed interest rate (annual interest rate)

- n ... operating duration in years
- iw ... reinvestment interest rate (annual interest rate)
- E ... final value of the reinvested returns

 $R_t = E_t - A_t$

Net present value C₀

$$C_0 = -A_0 + \left[\frac{R_1}{(1+i)} + \frac{R_2}{(1+i)^2} + \dots + \frac{R_n}{(1+i)^n}\right]$$

Internal rate of return *i*_{internal}

$$-A_{0} + \left[\frac{R_{1}}{(1+i_{\text{internal}})} + \frac{R_{2}}{(1+i_{\text{internal}})^{2}} + \dots + \frac{R_{n}}{(1+i_{\text{internal}})^{n}}\right] = 0$$

Modified internal rate of return i_{mod}

 $A_0 \cdot (1 + i_{mod})^n = E$ where $E = R_1 \cdot (1 + i_w)^{n-1} + R_2 \cdot (1 + i_w)^{n-2} + \dots + R_{n-1} \cdot (1 + i_w) + R_n$

23 Cost-of-Production and Theory of Value

x ... amount produced, offered, required or sold ($x \ge 0$)

cost function K	K(x)
fixed costs F	K(0)
variable cost function K_v	$K_{v}(x) = K(x) - F$
marginal cost function K'	<i>Κ</i> ′(<i>x</i>)
unit cost function (average cost function) \overline{K}	$\overline{K}(x) = \frac{K(x)}{x}$
variable unit cost function (variable average cost function) $\overline{K_v}$	$\overline{K_{v}}(x) = \frac{K_{v}(x)}{x}$
minimum efficient scale x_{opt}	$\overline{K}'(x_{oot}) = 0$ (minimum of \overline{K})
long-term break-even price (cost-covering price)	$\overline{K}(x_{opt})$
operating minimum x_{min}	$\overline{K_v}'(x_{\min}) = 0$ (minimum of $\overline{K_v}$)
short-term break-even price	$\overline{K_v}(x_{\min})$
point of inflexion of the cost function	$\mathcal{K}''(x) = 0$
progressive costs	<i>K</i> ′′′(<i>x</i>) > 0
degressive costs	<i>K''(x)</i> < 0
price p	
price function of demand (price-demand function) $p_{\rm N}$	$\mathcal{P}_{N}(X)$
price function of supply p_A	$\mathcal{P}_{A}(X)$
market equilibrium	$p_{A}(x) = p_{N}(x)$
ceiling price	р _N (0)
saturation amount	$p_{\rm N}(x)=0$
revenue function E	$E(x) = p \cdot x$ or $E(x) = p_N(x) \cdot x$
marginal revenue function E'	E'(x)
profit function G	G(x) = E(x) - K(x)
marginal profit function G'	<i>G'(x)</i>
break-even point x_{u}	$G(x_u) = G(x_o) = 0$ where $x_u \le x_o$
upper profit limit x _o	$\Box(\Lambda_{\rm u}) = \Box(\Lambda_{\rm o}) = 0 \text{where} \Lambda_{\rm u} \ge \Lambda_{\rm o}$
profit range	[X _u , X _o]
Cournot's point C	$C = (x_{c}, p_{N}(x_{c}))$ where $G'(x_{c}) = 0$

24 Technical and Scientific Basics

ϱ density	<i>t</i> time
<i>m</i> mass	s distance
V volume	vvelocity
F force	a acceleration
W work done	$v_0 \dots$ initial velocity
P power	
density	$Q = \frac{m}{V}$
-	V
force	$F = m \cdot a$
work done	$W = F \cdot s$
power	$P = \frac{W}{t}$
	τ
Motion	
Motion	
velocity for uniform linear motion	$V = \frac{S}{t}$
	t t
velocity for uniformly accelerated linear motion	$v - a \cdot t + v$
velocity in terms of the time t	v(t) = s'(t)
	V(t) = S(t)
acceleration in terms of the time t	c'(t) - v''(t) - c''(t)
	a(t) = v'(t) = s''(t)

.....

Index

A

absolute change 11 absolute frequency 15 absolute value (of a vector) 8 acceleration 22 accumulation factor 19 acquisition costs 20 amortisation table 19 amplitude 7 angle 7 angular frequency 7 annual interest rate 19, 20 annuity 19 annuity due 19 antiderivative 13 arc length (of a circle) 6 arc length (of a function) 14 area 5 area of the base 6 arithmetic mean 15 arithmetic sequence 11 arithmetic series 11 average cost function 21 average rate of change 11

В

Bayes' theorem 16 binomial coefficient 16 binomial distribution 17 binomial formulae 4 break-even point 21

С

carrying capacity 12 Cartesian form 8 ceiling price 21 centi- 3 chain rule 13 circle 6 common logarithm 4 complementary event 16 complex numbers 8 compound interest 19 conditional probability 16 cone 6 confidence interval 18 correlation coefficient 18 cosine 7 cosine rule 7 cost function 21 cost-covering price 21 cost-of-production and theory of value 21 Cournot's point 21 cube 6 cuboid 6 cumulative distribution function 17 cylinder 6

D

deca- 3 deci- 3 definite integral 13 degrees 7 degrees of freedom 18 degressive costs 21 demand vector 10 density 22 density function 17 derivative 13 difference (of sets) 3 difference quotient 11 differential equation 14 differential quotient 11 differentiation rules 13 direction vector 9 discrete random variable 17

Е

effective annual interest rate 19 element 3 empty set 3 equation of a line 9 equilateral triangle 5 equivalent interest rates 19 expectation value 17 explicit rule 11 exponential decay 12 exponential growth 12

F

factorial 16 final capital 19 final value 19, 20 financial mathematics 19 fixed costs 21 force 22 frequency 7

G

general triangle 5, 7 geometric mean 15 geometric sequence 11 geometric series 11 giga- 3 gradient 9 growth factor 12

н

hecto- 3 Heron's formula 5 homogeneous differential equation 14 hypotenuse 5, 7

I

identity matrix 10 imaginary part 8 imputed interest rate 20 indefinite integral 13 infinite geometric series 11 initial investment 19 instantaneous rate of change 11 integers 3 integral 13 intercept theorem 5 interest 19 interest amount 19 interest rate 19 interference function 14 internal rate of return 20 interquartile range 15 intersection (of sets) 3 inverse matrix 10 investments 20

κ

kilo- 3 kite 5

L

Laplace experiment 16 lateral surface area 6 limited decay 12 limited growth 12 line 9 linear decay 12 linear factorisation 4 linear growth 12 linear regression 18 linear substitution 14 linear system of equations 10 logarithms 4 logistic growth 12 long-term break-even price 21

Μ

manufacturing processes 10 marginal cost function 21 marginal profit function 21 marginal revenue function 21 market equilibrium 21 mass 22 material consumption matrix 10 matrix 10 mean 15 mean (of a function) 14 measures of central tendency 15 measures of spread 15 median 15 mega- 3 micro- 3 milli- 3

minimum efficient scale 21 modified internal rate of return 20 motion 22

Ν

nano- 3 natural logarithm 4 natural numbers 3 net present value 20 nonhomogeneous differential equation 14 normal distribution 17

0

operating duration 20 operating minimum 21 ordinary annuity 19 oscillation period 7

Ρ

parallel vectors 9 parallelogram 5 percentage change 11 perimeter 5,6 period length 7 perpendicular vector 8 pico- 3 point of inflexion of a cost function 21 polar forms 8 power 22 powers 3 prediction interval 18 prefixes 3 present value 19 price 21 price function of demand 21 price function of supply 21 price-demand function 21 prism 6 probability 16, 17 product rule 13 production vector 10 profit function 21 profit limit 21 profit range 21 progressive costs 21 proper subset 3 pyramid 6 Pythagorean theorem 5

Q

quadratic equations 4 quadrilateral 5 quantile 18 quartile 15 quotient rule 13

R

radians 7 random variable 17 range 15 rates of change 11 rational exponent 3 rational numbers 3 real numbers 3 real part 8 rectangle 5 recursive rule 11 reinvestment interest rate 20 relative change 11 relative frequency 15 repayment amount 19 residual debt 19 returns 20 revenue function 21 rhombus 5 right-angled triangle 5, 7 roots 3

S

sample 15, 18 sample mean 18 sample size 18 saturation amount 21 saturation function 12 saturation value 12 scalar product 8 sector (of a circle) 6 separable differential equations 14 sequences 11 series 11 sets 3 sets of numbers 3 short-term break-even price 21 sides (of a triangle) 5, 7 similarity 5 simple interest 19 sine 7 sine function 7 sine rule 7 slope 9 solids 6 solids of revolution 14 sphere 6 square 5 standard deviation 15, 17 standard normal distribution 17 statistics 15 subset 3 sum rule 13 surface area 6

т

tangent 7 *t*-distribution 18 tera- 3 transposed matrix 10 trapezoid 5 triangle 5 trigonometric formula for the area of a triangle 7 trigonometry 7 two-dimensional shapes 5

U

uniform linear motion 22 uniformly accelerated linear motion 22 union (of sets) 3 unit circle 7 unit cost function 21 unit vector 9

v

variable average cost function 21 variable cost function 21 variable unit cost function 21 variance 15, 17 vector equation of a line 9 vector product 9 vectors 8 velocity 22 Vieta's theorem 4 volume 6, 14, 22

W

work done 22

Ζ

zero phase angle 7