Standardised Competence-Oriented Written School-Leaving Examination/ School-Leaving and Diploma Examination

Formula Booklet

Mathematics (AHS) Applied Mathematics (BHS) Higher Education Entrance Examination

[^0]
Table of Contents

Chapter Page
1 Sets 3
2 Prefixes 3
3 Powers 3
4 Logarithms 4
5 Quadratic Equations 4
6 Two-Dimensional Shapes 5
7 Solids 6
8 Trigonometry 7
9 Complex Numbers 8
10 Vectors 8
11 Straight Lines 9
12 Matrices 10
13 Sequences and Series 11
14 Rates of Change 11
15 Growth and Decay Processes 12
16 Differentiation and Integration 13
$171^{\text {st }}$ Order Differential Equations 14
18 Statistics 15
19 Probability 16
20 Linear Regression 18
21 Financial Mathematics 19
22 Investments 20
23 Cost-of-Production and Theory of Value 21
24 Technical and Scientific Basics 22
Index 23

1 Sets

\in	is an element of...
\notin	is not an element of...
\cap	intersection
\cup	union
\subset	proper subset
\subseteq	subset
1	difference ("without")
\{ \}	empty set

Sets of numbers

$\mathbb{N}=\{0,1,2, \ldots\}$	natural numbers
\mathbb{Z}	integers
\mathbb{Q}	rational numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
\mathbb{R}^{+}or \mathbb{R}^{-}	positive or negative real numbers
\mathbb{R}_{0}^{+}or \mathbb{R}_{0}^{-}	positive or negative real numbers including zero

2 Prefixes

tera-	T	10^{12}	deci-	d	10^{-1}
giga-	G	10^{9}	centi-	c	10^{-2}
mega-	M	10^{6}	milli-	m	10^{-3}
kilo-	k	10^{3}	micro-	μ	10^{-6}
hecto-	h	10^{2}	nano-	n	10^{-9}
deca-	da	10^{1}	pico-	p	10^{-12}

3 Powers

Powers with integer exponents

$$
a \in \mathbb{R} ; n \in \mathbb{N} \backslash\{0\} \quad a \in \mathbb{R} \backslash\{0\} ; n \in \mathbb{N} \backslash\{0\}
$$

$a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a}$
$a^{1}=a$
n factors
Powers with rational exponents (roots)
$a, b \in \mathbb{R}_{0}^{+} ; n, k \in \mathbb{N} \backslash\{0\}$ where $n \geq 2$
$a=\sqrt[n]{b} \quad \Leftrightarrow \quad a^{n}=b$
$a^{\frac{1}{n}}=\sqrt[n]{a}$
$a^{\frac{k}{n}}=\sqrt[n]{a^{k}}$
$a^{-\frac{\hbar}{n}}=\frac{1}{\sqrt[n]{a^{k}}}$ where $a>0$

Calculation rules
$a, b \in \mathbb{R} \backslash\{0\} ; r, s \in \mathbb{Z}$
$a, b \in \mathbb{R}_{0}^{+} ; m, n, k \in \mathbb{N} \backslash\{0\}$ where $m, n \geq 2$
or $a, b \in \mathbb{R}^{+} ; r, s \in \mathbb{Q}$
$a^{r} \cdot a^{s}=a^{r+s}$
$\frac{a^{r}}{a^{s}}=a^{r-s}$
$\left(a^{\prime}\right)^{s}=a^{r \cdot s}$
$(a \cdot b)^{r}=a^{r} \cdot b^{r}$
$\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$

$$
\begin{aligned}
& \sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \\
& \sqrt[n]{a^{k}}=(\sqrt[n]{a})^{k} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0) \\
& \sqrt[n]{\sqrt[n]{a}}=\sqrt[n \cdot n]{a}
\end{aligned}
$$

Binomial formulae

$a, b \in \mathbb{R} ; n \in \mathbb{N}$

$(a+b)^{2}=a^{2}+2 \cdot a \cdot b+b^{2}$
$(a-b)^{2}=a^{2}-2 \cdot a \cdot b+b^{2}$
$(a+b) \cdot(a-b)=a^{2}-b^{2}$

4 Logarithms

$a, b, c \in \mathbb{R}^{+}$where $a \neq 1 ; x, r \in \mathbb{R}$
$x=\log _{a}(b) \quad \Leftrightarrow \quad a^{x}=b$
$\log _{a}(b \cdot c)=\log _{a}(b)+\log _{a}(c) \quad \log _{a}\left(\frac{b}{c}\right)=\log _{a}(b)-\log _{a}(c) \quad \log _{a}\left(b^{r}\right)=r \cdot \log _{a}(b)$
$\log _{a}\left(a^{x}\right)=x \quad \log _{a}(a)=1 \quad \log _{a}(1)=0$
natural logarithm (logarithm with base e): $\ln (b)=\log _{e}(b)$
common logarithm (logarithm with base 10): $\lg (b)=\log _{10}(b)$

5 Quadratic Equations

$p, q \in \mathbb{R} \quad a, b, c \in \mathbb{R}$ where $a \neq 0$
$x^{2}+p \cdot x+q=0$
$x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}$

$$
\begin{aligned}
& a \cdot x^{2}+b \cdot x+c=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}
\end{aligned}
$$

Vieta's Theorem
x_{1} and x_{2} are the solutions to the equation $x^{2}+p \cdot x+q=0$ if and only if:
$x_{1}+x_{2}=-p$
$x_{1} \cdot x_{2}=q$
Linear factorisation
$x^{2}+p \cdot x+q=\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)$

$$
\begin{aligned}
& (a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot a^{n-k} \cdot b^{k} \\
& (a-b)^{n}=\sum_{k=0}^{n}(-1)^{k} \cdot\binom{n}{k} \cdot a^{n-k} \cdot b^{k}
\end{aligned}
$$

6 Two-Dimensional Shapes

A ... area
u ... perimeter

Triangle

General triangle
$A=\frac{a \cdot h_{a}}{2}=\frac{b \cdot h_{b}}{2}=\frac{c \cdot h_{c}}{2}$
$u=a+b+c$

Heron's Formula
$A=\sqrt{s \cdot(s-a) \cdot(s-b) \cdot(s-c)}$ where $s=\frac{a+b+c}{2}$

Right-angled triangle with hypotenuse c and sides a, b
$A=\frac{a \cdot b}{2}=\frac{c \cdot h_{c}}{2}$
$h_{c}^{2}=p \cdot q$
$a^{2}=c \cdot p$
$b^{2}=c \cdot q$

Pythagorean theorem
$a^{2}+b^{2}=c^{2}$

Equilateral triangle
$A=\frac{a^{2}}{4} \cdot \sqrt{3}=\frac{a \cdot h}{2}$
$h=\frac{a}{2} \cdot \sqrt{3}$

Quadrilateral

Square
$A=a^{2}$
$u=4 \cdot a$

Rhombus
$A=a \cdot h_{a}=\frac{e \cdot f}{2}$
$u=4 \cdot a$

Trapezium
$A=\frac{(a+c) \cdot h}{2}$
$u=a+b+c+d$

Rectangle
$A=a \cdot b$
$u=2 \cdot a+2 \cdot b$

Parallelogram
$A=a \cdot h_{a}=b \cdot h_{b}$
$u=2 \cdot a+2 \cdot b$

Kite
$A=\frac{e \cdot f}{2}$
$u=2 \cdot a+2 \cdot b$

Circle
Arc length and sector of a circle
$A=\pi \cdot r^{2}=\frac{\pi \cdot d^{2}}{4}$
$u=2 \cdot \pi \cdot r=\pi \cdot d$

α in degrees $\left({ }^{\circ}\right)$
$b=\pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$
$A=\pi \cdot r^{2} \cdot \frac{\alpha}{360^{\circ}}=\frac{b \cdot r}{2}$

7 Solids

$V \ldots$ volume	$M \ldots$ lateral surface area
$O \ldots$ surface area	$u_{G} \ldots$ perimeter of the base

Prism

$V=G \cdot h$
$M=u_{G} \cdot h$
$O=2 \cdot G+M$

Cuboid

$V=a \cdot b \cdot c$
$O=2 \cdot(a \cdot b+a \cdot c+b \cdot c)$

Pyramid

$v=\frac{G \cdot h}{3}$
$O=G+M$

Cylinder

$V=\pi \cdot r^{2} \cdot h$
$M=2 \cdot \pi \cdot r \cdot h$
$O=2 \cdot \pi \cdot r^{2}+2 \cdot \pi \cdot r \cdot h$

Cube

$V=a^{3}$
$O=6 \cdot a^{2}$

Cone

$V=\frac{1}{3} \cdot \pi \cdot r^{2} \cdot h$
$M=\pi \cdot r \cdot s$
$O=\pi \cdot r^{2}+\pi \cdot r \cdot s$
$s=\sqrt{h^{2}+r^{2}}$

Sphere

$$
\begin{aligned}
& V=\frac{4}{3} \cdot \pi \cdot r^{3} \\
& O=4 \cdot \pi \cdot r^{2}
\end{aligned}
$$

8 Trigonometry

Converting between degrees and radians

Right-angled triangle trigonometry
Sine: $\quad \sin (\alpha)=\frac{\text { side opposite to } \alpha}{\text { hypotenuse }}$
Cosine: $\quad \cos (\alpha)=\frac{\text { side adjacent to } \alpha}{\text { hypotenuse }}$
Tangent: $\tan (\alpha)=\frac{\text { side opposite to } \alpha}{\text { side adjacent to } \alpha}$

Unit circle trigonometry

$\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$
$\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}$ for $\cos (\alpha) \neq 0$

Trigonometry in general triangles
Sine Rule: $\quad \frac{a}{\sin (\alpha)}=\frac{b}{\sin (\beta)}=\frac{c}{\sin (\gamma)}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 \cdot b \cdot c \cdot \cos (\alpha)$

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 \cdot a \cdot c \cdot \cos (\beta) \\
& c^{2}=a^{2}+b^{2}-2 \cdot a \cdot b \cdot \cos (\gamma)
\end{aligned}
$$

Trigonometric formula for the area of a triangle
$A=\frac{1}{2} \cdot b \cdot c \cdot \sin (\alpha)=\frac{1}{2} \cdot a \cdot c \cdot \sin (\beta)=\frac{1}{2} \cdot a \cdot b \cdot \sin (\gamma)$
General sine function (in terms of time t)
A ... amplitude
T... oscillation period (period length)
ω... angular frequency
f... frequency
φ... zero phase angle
$y(t)=A \cdot \sin (\omega \cdot t+\varphi)$
$T=\frac{2 \cdot \pi}{\omega}=\frac{1}{f}$
$t_{0}=-\frac{\varphi}{\omega}$

9 Complex Numbers

j or $i \ldots$ imaginary unit with $j^{2}=-1$ or $\mathrm{i}^{2}=-1$	
a real part, $a \in \mathbb{R}$ $r \ldots$ modulus, $r \in \mathbb{R}_{0}^{+}$ $b \ldots$ imaginary part, $b \in \mathbb{R}$ $\varphi \ldots$ argument, $\varphi \in \mathbb{R}$	

Cartesian form

$$
z=a+b \cdot j
$$

Polar forms

$z=r \cdot[\cos (\varphi)+j \cdot \sin (\varphi)]=r \cdot e^{j \cdot \varphi}=(r ; \varphi)=r \angle \varphi$
Conversions
$a=r \cdot \cos (\varphi)$
$r=\sqrt{a^{2}+b^{2}}$
$\tan (\varphi)=\frac{b}{a}$

10 Vectors

$P, Q \ldots$ points

Vectors in \mathbb{R}^{2}

Arrow from P to Q :
$P=\left(p_{1}, p_{2}\right), Q=\left(q_{1}, q_{2}\right)$
$\overrightarrow{P Q}=\binom{q_{1}-p_{1}}{q_{2}-p_{2}}$
Calculation rules in \mathbb{R}^{2}
$\vec{a}=\binom{a_{1}}{a_{2}}, \vec{b}=\binom{b_{1}}{b_{2}}, \vec{a} \pm \vec{b}=\binom{a_{1} \pm b_{1}}{a_{2} \pm b_{2}}$
$k \cdot \vec{a}=k \cdot\binom{a_{1}}{a_{2}}=\binom{k \cdot a_{1}}{k \cdot a_{2}} \quad$ where $k \in \mathbb{R}$

Scalar product in \mathbb{R}^{2}

$\vec{a} \cdot \vec{b}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}$
Absolute value (length) of a vector in \mathbb{R}^{2} $|\vec{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$
\vec{n}, a vector perpendicular to $\vec{a}=\binom{a_{1}}{a_{2}}$ in \mathbb{R}^{2}
$\vec{n}=k \cdot\binom{-a_{2}}{a_{1}} \quad$ for $\quad|\vec{a}| \neq 0$ and $k \in \mathbb{R} \backslash\{0\}$

Vectors in \mathbb{R}^{n}
Arrow from P to Q :
$P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$
$\overrightarrow{P Q}=\left(\begin{array}{c}q_{1}-p_{1} \\ q_{2}-p_{2} \\ \vdots \\ q_{n}-p_{n}\end{array}\right)$
Calculation rules in \mathbb{R}^{n}
$\vec{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right), \vec{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right), \vec{a} \pm \vec{b}=\left(\begin{array}{c}a_{1} \pm b_{1} \\ a_{2} \pm b_{2} \\ \vdots \\ a_{n} \pm b_{n}\end{array}\right)$
$k \cdot \vec{a}=k \cdot\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right)=\left(\begin{array}{c}k \cdot a_{1} \\ k \cdot a_{2} \\ \vdots \\ k \cdot a_{n}\end{array}\right)$ where $k \in \mathbb{R}$
Scalar product in \mathbb{R}^{n}
$\vec{a} \cdot \vec{b}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+\ldots+a_{n} \cdot b_{n}$
Absolute value (length) of a vector in \mathbb{R}^{n}
$|\vec{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots+a_{n}{ }^{2}}$

Criterion for two vectors to be perpendicular in \mathbb{R}^{2} and \mathbb{R}^{3}
$\vec{a} \cdot \vec{b}=0 \Leftrightarrow \vec{a} \perp \vec{b}$ for $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$
Criterion for two vectors to be parallel in \mathbb{R}^{2} and \mathbb{R}^{3}
$\vec{a} \| \vec{b} \Leftrightarrow \vec{a}=k \cdot \vec{b}$ for $|\vec{a}| \neq 0,|\vec{b}| \neq 0$ and $k \in \mathbb{R} \backslash\{0\}$
Angle φ between \vec{a} and \vec{b} in \mathbb{R}^{2} and \mathbb{R}^{3}
$\cos (\varphi)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}$ for $|\vec{a}| \neq 0$ and $|\vec{b}| \neq 0$
Unit vector \vec{a}_{0} in the direction of \vec{a}
$\vec{a}_{0}=\frac{1}{|\vec{a}|} \cdot \vec{a}$ for $|\vec{a}| \neq 0$
Vector product in \mathbb{R}^{3}
$\vec{a} \times \vec{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}a_{2} \cdot b_{3}-a_{3} \cdot b_{2} \\ a_{3} \cdot b_{1}-a_{1} \cdot b_{3} \\ a_{1} \cdot b_{2}-a_{2} \cdot b_{1}\end{array}\right)$

11 Straight Lines

g ... line
$\vec{g} \ldots$ a direction vector for the line g
$\vec{n} \ldots$ a vector perpendicular to the line g
$X, P \ldots$ points on the line g
$m \ldots$ gradient of the line g
$\alpha \ldots$ angle of slope of the line g
$a, b, c, d, m \in \mathbb{R}$

Vector equation of a line g in \mathbb{R}^{2} and \mathbb{R}^{3}
$g: X=P+t \cdot \vec{g}$ where $t \in \mathbb{R}$
Equation of a line g in \mathbb{R}^{2}
the explicit equation of a line:
a general equation of a line:
a normal vector representation:
$g: y=m \cdot x+c \quad$ where $m=\tan (\alpha)$
$\left.\begin{array}{l}g: a \cdot x+b \cdot y=d \\ g: \vec{n} \cdot x=\vec{n} \cdot P\end{array}\right\}$ where $\vec{n} \|\binom{ a}{b}$ for $\binom{a}{b} \neq\binom{ 0}{0}$

12 Matrices

$a_{i j}, b_{i j} \in \mathbb{R} ; i, j, m, n, p \in \mathbb{N} \backslash\{0\} ; k \in \mathbb{R}$

Addition/subtraction of matrices

$\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right) \pm\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{m 1} & \cdots & b_{m n}\end{array}\right)=\left(\begin{array}{cccc}a_{11} \pm b_{11} & \cdots & a_{1 n} \pm & b_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} \pm b_{m 1} & \cdots & a_{m n} \pm & b_{m n}\end{array}\right)$

Multiplication of a matrix by a number k
$k \cdot\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right)=\left(\begin{array}{cccc}k \cdot a_{11} & \cdots & k \cdot & a_{1 n} \\ \vdots & \ddots & \vdots \\ k \cdot a_{m 1} & \cdots & k \cdot a_{m n}\end{array}\right)$

Matrix multiplication
A ... $m \times p$-matrix
B ...p×n-matrix
$\boldsymbol{C}=\boldsymbol{A} \cdot \boldsymbol{B} \ldots m \times n$-matrix
$\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 p} \\ \vdots & \ddots & \vdots \\ a_{i 1} & \cdots & a_{i p} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m p}\end{array}\right) \cdot\left(\begin{array}{ccccc}b_{11} & \cdots & b_{1 j} & \cdots & b_{1 n} \\ \vdots & & \vdots & & \vdots \\ b_{p 1} & \cdots & b_{p j} & \cdots & b_{p n}\end{array}\right)=\left(\begin{array}{ccccc}c_{11} & \cdots & c_{1 j} & \cdots & c_{1 n} \\ \vdots & & \vdots & & \vdots \\ c_{i 1} & \cdots & c_{i j} & \cdots & c_{i n} \\ \vdots & & \vdots & & \vdots \\ c_{m 1} & \cdots & c_{m j} & \cdots & c_{m n}\end{array}\right)$ where $c_{i j}=a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\ldots+a_{i p} \cdot b_{p j}$
Identity matrix I
Transposed matrix \boldsymbol{A}^{\top}
Inverse matrix A^{-1} of a square matrix A

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \\
& \boldsymbol{A}^{\top}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
\end{aligned}
$$

$$
A \cdot A^{-1}=A^{-1} \cdot \boldsymbol{A}=\boldsymbol{I}
$$

Systems of linear equations in matrix notation (n equations with n unknowns)
$a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+\ldots+a_{1 n} \cdot x_{n}=b_{1}$
$a_{21} \cdot x_{1}+a_{22} \cdot x_{2}+\ldots+a_{2 n} \cdot x_{n}=b_{2}$
...
$a_{n 1} \cdot x_{1}+a_{n 2} \cdot x_{2}+\ldots+a_{n n} \cdot x_{n}=b_{n}$

$$
\underbrace{\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)}_{\boldsymbol{A}} \cdot \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)}_{\vec{x}}=\underbrace{\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)}_{\vec{b}}
$$

If the inverse matrix \boldsymbol{A}^{-1} exists, then $\vec{x}=\boldsymbol{A}^{-1} \cdot \vec{b}$ holds

Manufacturing processes

A	
$\overrightarrow{\boldsymbol{x}} \ldots$... pquare material consumption matrix	$\stackrel{I}{n} \ldots$ identity matrix
	$\vec{n} \ldots$ demand vector

$\vec{x}=A \cdot \vec{x}+\vec{n}$
$\vec{x}=(I-A)^{-1} \cdot \vec{n}$
$\vec{n}=(I-A) \cdot \vec{x}$

13 Sequences and Series

Arithmetic sequence

$\left(a_{n}\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$
$d=a_{n+1}-a_{n}$

Recursive rule

$a_{n+1}=a_{n}+d$ with a_{1} given
Explicit rule
$a_{n}=a_{1}+(n-1) \cdot d$
Finite arithmetic series
Sum s_{n} of the first n terms
$s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n-1}+a_{n}$
$s_{n}=\frac{n}{2} \cdot\left(a_{1}+a_{n}\right)=\frac{n}{2} \cdot\left[2 \cdot a_{1}+(n-1) \cdot d\right]$

Geometric sequence

$\left(b_{n}\right)=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$
$q=\frac{b_{n+1}}{b_{n}}$
Recursive rule
$b_{n+1}=b_{n} \cdot q$ with b_{1} given
Explicit rule
$b_{n}=b_{1} \cdot q^{n-1}$

Finite geometric series

Sum s_{n} of the first n terms
$s_{n}=\sum_{i=1}^{n} b_{i}=b_{1}+b_{2}+\ldots+b_{n-1}+b_{n}$
$s_{n}=b_{1} \cdot \frac{q^{n}-1}{q-1}$ for $q \neq 1$
Infinite geometric series
$\sum_{n=1}^{\infty} b_{n}$ is convergent if and only if
$|q|<1$
$s=\lim _{n \rightarrow \infty} s_{n}=\frac{b_{1}}{1-q}$ for $|q|<1$

14 Rates of Change

For a real function f defined over an interval $[a, b]$:
Absolute change of f in $[a, b]$
$f(b)-f(a)$
Relative (percentage) change of f in $[a, b]$
$\frac{f(b)-f(a)}{f(a)}$ for $f(a) \neq 0$
Difference quotient (average rate of change) of f in $[a, b]$ or in $[x, x+\Delta x]$
$\frac{f(b)-f(a)}{b-a}$ or $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ for $b \neq a$ or $\Delta x \neq 0$
Differential quotient (instantaneous rate of change) of f at the point x
$f^{\prime}(x)=\lim _{x_{1}-x} \frac{f\left(x_{1}\right)-f(x)}{x_{1}-x}$ or $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

15 Growth and Decay Processes

```
t ... time
N(t) .. amount at time t
No}=N(0)\ldots\mathrm{ amount at time t=0
```


Linear

$k \in \mathbb{R}^{+}$

linear growth	$N(t)=N_{0}+k \cdot t$
linear decay	$N(t)=N_{0}-k \cdot t$

Exponential

$a, \lambda \in \mathbb{R}^{+}$where $a \neq 1$ and $N_{0}>0$
a ... growth factor

exponential growth	$N(t)=N_{0} \cdot a^{t}$ for $a>1$	$N(t)=N_{0} \cdot e^{\lambda \cdot t}$
exponential decay	$N(t)=N_{0} \cdot a^{t}$	$N(t)=N_{0} \cdot e^{-\lambda \cdot t}$
	for $0<a<1$	

Limited

$S, a, \lambda \in \mathbb{R}^{+}$where $0<a<1$
S... saturation value, carrying capacity

limited growth	$N(t)=S-b \cdot a^{t}$	$N(t)=S-b \cdot e^{-\lambda \cdot t}$
(saturation function)	where $b=S-N_{0}$	where $b=S-N_{0}$
limited decay	$N(t)=S+b \cdot a^{t}$	$N(t)=S+b \cdot e^{-\lambda \cdot t}$
	where $b=\left\|S-N_{0}\right\|$	where $b=\left\|S-N_{0}\right\|$

Logistic

$$
S, a, \lambda \in \mathbb{R}^{+} \text {where } 0<a<1 \text { and } N_{0}>0
$$

S... saturation value, carrying capacity
logistic growth

$$
\begin{array}{ll}
N(t)=\frac{S}{1+C \cdot a^{t}} & N(t)=\frac{S}{1+C \cdot e^{-\lambda \cdot t}} \\
\text { where } c=\frac{S-N_{0}}{N_{0}} & \text { where } c=\frac{S-N_{0}}{N_{0}}
\end{array}
$$

16 Differentiation and Integration

$f, g, h \ldots$ functions that are differentiable over \mathbb{R} or over a defined interval
$f^{\prime}, g^{\prime}, h^{\prime} \ldots$ derivative functions
$F, G, H \ldots$ antiderivatives
$C, k, q \in \mathbb{R} ; a \in \mathbb{R}^{+} \backslash\{1\}$

Indefinite integral

$\int f(x) d x=F(x)+C$ where $F^{\prime}=f$

Definite integral

$\int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$

Function
Derivative
$f^{\prime}(x)=0$
$F(x)=k \cdot x$
$f(x)=k$
$f^{\prime}(x)=q \cdot x^{q-1}$
$F(x)=\frac{x^{q+1}}{q+1}$ for $q \neq-1$
$F(x)=\ln (|x|) \quad$ for $\quad q=-1$
$f(x)=e^{x}$
$f^{\prime}(x)=e^{x}$
$F(x)=e^{x}$
$f(x)=a^{x} \quad f^{\prime}(x)=\ln (a) \cdot a^{x} \quad F(x)=\frac{a^{x}}{\ln (a)}$
$f(x)=\ln (x)$
$f^{\prime}(x)=\frac{1}{x}$
$F(x)=x \cdot \ln (x)-x$
$f(x)=\log _{a}(x)$
$f^{\prime}(x)=\frac{1}{x \cdot \ln (a)}$
$F(x)=\frac{1}{\ln (a)} \cdot(x \cdot \ln (x)-x)$
$f(x)=\sin (x)$
$f^{\prime}(x)=\cos (x)$
$F(x)=-\cos (x)$
$f(x)=\cos (x)$
$f^{\prime}(x)=-\sin (x)$
$F(x)=\sin (x)$
$f(x)=\tan (x)$
$f^{\prime}(x)=1+\tan ^{2}(x)=\frac{1}{\cos ^{2}(x)} \quad F(x)=-\ln (|\cos (x)|)$
$g(x)=k \cdot f(x)$
$g^{\prime}(x)=k \cdot f^{\prime}(x)$
$G(x)=k \cdot F(x)$
$h(x)=f(x) \pm g(x)$
$h^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)$
$H(x)=F(x) \pm G(x)$
$g(x)=f(k \cdot x)$
$g^{\prime}(x)=k \cdot f^{\prime}(k \cdot x)$
$G(x)=\frac{1}{k} \cdot F(k \cdot x)$

Differentiation rules

multiplication by a constant $(k \cdot f)^{\prime}=k \cdot f^{\prime}$

sum rule	$(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
product rule	$(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
quotient rule	$\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$ for $g(x) \neq 0$

chain rule
$h(x)=f(g(x)) \quad \Rightarrow \quad h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Method for integration - linear substitution
$\int f(a \cdot x+b) \mathrm{d} x=\frac{F(a \cdot x+b)}{a}+C$
Volume V of solids of revolution
Rotation of the graph of a function f with $y=f(x)$ about an axis

Rotation about the x-axis $(a \leq x \leq b)$
$V_{x}=\pi \cdot \int_{a}^{b} y^{2} d x$

Rotation about the y-axis ($c \leq y \leq d$)
$V_{y}=\pi \cdot \int_{c}^{d} x^{2} d y$

Arc length s of the graph of a function f in the interval $[a, b]$
$s=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
Mean m of a function f in the interval $[a, b]$
$m=\frac{1}{b-a} \cdot \int_{a}^{b} f(x) \mathrm{d} x$

$171^{\text {st }}$ Order Differential Equations

Separable differential equations
$y^{\prime}=f(x) \cdot g(y)$ or $\frac{d y}{d x}=f(x) \cdot g(y)$ where $y=y(x)$
$1^{\text {st }}$ order linear differential equation with constant coefficients
$y . .$. general solution of a nonhomogeneous differential equation
$y_{\mathrm{h}} \ldots$ general solution of the homogeneous differential equation $y^{\prime}+a \cdot y=0$
$y_{p} \ldots$ particular solution of the nonhomogeneous differential equation
S ... interference function
$y^{\prime}+a \cdot y=s(x) \quad$ where $a \in \mathbb{R}, y=y(x)$
$y=y_{n}+y_{p}$

18 Statistics

$x_{1}, x_{2}, \ldots, x_{n} \ldots$ a list of n real numbers
for which k different values $x_{1}, x_{2}, \ldots, x_{k}$ occur.
$H_{i} \ldots$ absolute frequency of x_{i} with $H_{1}+H_{2}+\ldots+H_{k}=n$

Relative frequency h_{i} of x_{i}

$h_{i}=\frac{H_{i}}{n}$

Measures of central tendency

Arithmetic mean \bar{x}
$\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$
$\bar{x}=\frac{x_{1} \cdot H_{1}+x_{2} \cdot H_{2}+\ldots+x_{k} \cdot H_{k}}{n}=\frac{1}{n} \cdot \sum_{i=1}^{k} x_{i} \cdot H_{i}$
Median \tilde{x} for metric data

$$
\begin{aligned}
& \text { Geometric mean } \bar{x}_{\text {geo }} \\
& \bar{x}_{\text {geo }}=\sqrt[n]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}} \text { for } x_{i}>0
\end{aligned}
$$

$x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)} \ldots$ ordered list of n values
$\tilde{x}= \begin{cases}x_{\left(\frac{n+1}{2}\right)}^{2} & \ldots \text { when } n \text { is odd } \\ \frac{1}{2} \cdot\left(x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}\right) & \ldots \text { when } n \text { is even }\end{cases}$
Quartiles
q_{1} : At least 25% of the values are less than or equal to q_{1}, and at least 75% of the values are greater than or equal to q_{1}.
$q_{2}=\tilde{x}$: At least 50% of the values are less than or equal to q_{2}, and at least 50% of the values are greater than or equal to q_{2}.
q_{3} : At least 75% of the values are less than or equal to q_{3}, and at least 25% of the values are greater than or equal to q_{3}.

Measures of spread

Range: $x_{\text {max }}-x_{\text {min }}$
Interquartile range: $q_{3}-q_{1}$
$s^{2} \ldots$ (empirical) variance of a sample
s ... (empirical) standard deviation of a sample
$s^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
$s^{2}=\frac{1}{n} \cdot \sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} \cdot H_{i}$
$s=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
$s=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} \cdot H_{i}}$

If the variance of a population should be estimated using a sample of size n.
$s_{n-1}^{2}=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
s_{n-1}=\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
\begin{aligned}
& s_{n-1}^{2}=\frac{1}{n-1} \cdot \sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} \cdot H_{i} \\
& s_{n-1}=\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} \cdot H_{i}}
\end{aligned}
$$

19 Probability

$n \in \mathbb{N} \backslash\{0\} ; k \in \mathbb{N}$ where $k \leq n$
A, B... events
\bar{A} or $\neg A \ldots$ complementary event of A
$A \cap B$ or $A \wedge B \ldots A$ and B (the event A and the event B both occur)
$A \cup B$ or $A \vee B \ldots A$ or B (at least one of the two events A or B occurs)
$P(A)$... probability of event A occurring
$P(A \mid B) \ldots$ probability of event A occurring given that event B has occurred (conditional probability)

Factorial
Binomial coefficient
$n!=n \cdot(n-1) \cdot \ldots \cdot 1 \quad 0!=1 \quad 1!=1$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
$$

Probability for a Laplace experiment

$P(A)=\frac{\text { number of successful outcomes for } A}{\text { number of possible outcomes }}$

Elementary rules

$P(\bar{A})=1-P(A) \quad$ or $\quad P(\neg A)=1-P(A)$
$P(A \cap B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B) \quad$ or $\quad P(A \wedge B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$
If A and B are (stochastically) independent of one another:
$P(A \cap B)=P(A) \cdot P(B)$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
If A and B are mutually exclusive:
$P(A \cup B)=P(A)+P(B)$
or $\quad P(A \wedge B)=P(A) \cdot P(B)$
or $\quad P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
or $\quad P(A \vee B)=P(A)+P(B)$

Conditional probability of A given the condition B
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
or $\quad P(A \mid B)=\frac{P(A \wedge B)}{P(B)}$

Bayes' Theorem

$P(A \mid B)=\frac{P(A) \cdot P(B \mid A)}{P(B)}=\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P(\bar{A}) \cdot P(B \mid \bar{A})}$
or
$P(A \mid B)=\frac{P(A) \cdot P(B \mid A)}{P(B)}=\frac{P(A) \cdot P(B \mid A)}{P(A) \cdot P(B \mid A)+P(\neg A) \cdot P(B \mid \neg A)}$

Expectation value μ of a discrete random variable X with values $x_{1}, x_{2}, \ldots, x_{n}$ $\mu=E(X)=x_{1} \cdot P\left(X=x_{1}\right)+x_{2} \cdot P\left(X=x_{2}\right)+\ldots+x_{n} \cdot P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} \cdot P\left(X=x_{i}\right)$

Variance σ^{2} of a discrete random variable X with values $x_{1}, x_{2}, \ldots, x_{n}$ $\sigma^{2}=V(X)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)$

Standard deviation σ

$\sigma=\sqrt{V(X)}$

Binomial distribution

$n \in \mathbb{N} \backslash\{0\} ; k \in \mathbb{N} ; p \in \mathbb{R}$ where $k \leq n$ and $0 \leq p \leq 1$

The random variable X is binomially distributed with parameters n and p
$P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}$
Expectation value: $E(X)=\mu=n \cdot p$
Variance: $V(X)=\sigma^{2}=n \cdot p \cdot(1-p)$

Normal distribution

$\mu, \sigma \in \mathbb{R}$ where $\sigma>0$
$f \ldots$ probability density function
F... cumulative distribution function
φ... probability density function of the standard normal distribution
$\phi \ldots$ cumulative density function of the standard normal distribution

Normal distribution $N\left(\mu ; \sigma^{2}\right)$: The random variable X is normally distributed with expectation value (μ), standard deviation (σ) and variance $\left(\sigma^{2}\right)$
$P\left(X \leq x_{1}\right)=F\left(x_{1}\right)=\int_{-\infty}^{x_{1}} f(x) \mathrm{d} x=\int_{-\infty}^{x_{1}} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}} \mathrm{~d} x$
Probabilities for the empirical rule
$P(\mu-\sigma \leq X \leq \mu+\sigma) \approx 0.683$
$P(\mu-2 \cdot \sigma \leq X \leq \mu+2 \cdot \sigma) \approx 0.954$
$P(\mu-3 \cdot \sigma \leq X \leq \mu+3 \cdot \sigma) \approx 0.997$

Standard normal distribution $N(0,1)$
$z=\frac{x-\mu}{\sigma}$
$\phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \varphi(x) \mathrm{d} x=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} \mathrm{~d} x$
$\phi(-z)=1-\phi(z)$
$P(-z \leq Z \leq z)=2 \cdot \phi(z)-1$

$P(-z \leq Z \leq z)$	$=90 \%$	$=95 \%$	$=99 \%$
z	≈ 1.645	≈ 1.960	≈ 2.576

Prediction Intervals and Confidence Intervals

$\mu, \sigma, \alpha \in \mathbb{R}$ where $\sigma>0$ and $0<\alpha<1$
\bar{x}... sample mean
$s_{n-1} \ldots$ sample standard deviation
n ... sample size
$z_{1-\frac{\alpha}{2}} \ldots\left(1-\frac{\alpha}{2}\right)$-quantile of the standard normal distribution
$t_{f ; 1-\frac{\alpha}{2}} \ldots\left(1-\frac{\alpha}{2}\right)$-quantile of the t-distribution with f degrees of freedom
Two-sided $(1-\alpha)$-prediction interval for a single value of a normally distributed random variable $\left[\mu-z_{1-\frac{\alpha}{2}} \cdot \sigma, \mu+z_{1-\frac{\alpha}{2}} \cdot \sigma\right]$

Two-sided $(1-\alpha)$-prediction interval for the sample mean of normally distributed values
$\left[\mu-z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \mu+z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
Two-sided $(1-\alpha)$-confidence interval for the expectation value of a normally distributed random variable
known σ : $\left[\bar{x}-z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
unknown $\sigma:\left[\bar{x}-t_{f, 1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}, \bar{x}+t_{f, 1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}\right]$ where $f=n-1$

20 Linear Regression

$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \ldots$ pairs of values
$\bar{x}, \bar{y} \ldots$ mean of x_{i} and y_{i}
linear regression function f with $f(x)=m \cdot x+c$
$m=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
$c=\bar{y}-m \cdot \bar{x}$

Pearson's correlation coefficient
$r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}$

21 Financial Mathematics

Compound interest calculation

$K_{0} \ldots$ initial investment
$K_{n} \ldots$ final capital after n years
i ... annual percentage rate of interest
simple interest: $K_{n}=K_{0} \cdot(1+i \cdot n)$
compound interest: $K_{n}=K_{0} \cdot(1+i)^{n}$

Interest calculated during the year

```
m ... number of compounding periods per year The following abbreviations are used for
                                    compounding periods:
                                    p.a. .. per year
                                    p.s. ... per semester
                                    p.q. ... per quarter
                                    p.m. ... per month
```

$K_{n}=K_{0} \cdot\left(1+i_{m}\right)^{n \cdot m}$

Annuities

R ... amount paid per time period
n ... number of payments
i... interest rate
$q=1+i \ldots$ accumulation factor
Requirement: annuity period = interest period

	ordinary annuity	annuity due
final value E	$E_{\text {ordinary }}=R \cdot \frac{q^{n}-1}{q-1}$	$E_{\text {due }}=R \cdot \frac{q^{n}-1}{q-1} \cdot q$
present value B	$B_{\text {ordinany }}=R \cdot \frac{q^{n}-1}{q-1} \cdot \frac{1}{q^{n}}$	$B_{\text {due }}=R \cdot \frac{q^{n}-1}{q-1} \cdot \frac{1}{q^{n-1}}$

Amortisation table

period	interest amount	repayment amount annuity	residual debt	
0				K_{0}
1	$K_{0} \cdot i$	T_{1}	$A_{1}=K_{0} \cdot i+T_{1}$	$K_{1}=K_{0}-T_{1}$
\ldots	\ldots	\ldots	\ldots	\ldots

22 Investments

$E_{t} \ldots$ revenue in year t
$A_{t} \ldots$ expenses in year t
$A_{0} \ldots$ acquisition costs
$R_{t} \ldots$ returns in year t
i... imputed interest rate (annual interest rate)
$n \ldots$ operating duration in years
$i_{w} \ldots$ reinvestment interest rate (annual interest rate)
E... final value of the reinvested returns
$R_{t}=E_{t}-A_{t}$

Net present value C_{0}

$C_{0}=-A_{0}+\left[\frac{R_{1}}{(1+i)}+\frac{R_{2}}{(1+i)^{2}}+\ldots+\frac{R_{n}}{(1+i)^{n}}\right]$

Internal rate of return $i_{\text {internal }}$

$-A_{0}+\left[\frac{R_{1}}{\left(1+i_{\text {interal }}\right)}+\frac{R_{2}}{\left(1+i_{\text {interma }}\right)^{2}}+\ldots+\frac{R_{n}}{\left(1+i_{\text {intermal }}\right)^{n}}\right]=0$

Modified internal rate of return $i_{\text {mod }}$

$A_{0} \cdot\left(1+i_{\text {mod }}\right)^{n}=E \quad$ where $\quad E=R_{1} \cdot\left(1+i_{\mathrm{w}}\right)^{n-1}+R_{2} \cdot\left(1+i_{\mathrm{w}}\right)^{n-2}+\ldots+R_{n-1} \cdot\left(1+i_{\mathrm{w}}\right)+R_{n}$

23 Cost-of-Production and Theory of Value

$x \ldots$ amount produced, offered, required or sold ($x \geq 0$)

cost function K	$K(x)$
fixed costs F	$K(0)$
variable cost function K_{v}	$K_{v}(x)=K(x)-F$
marginal cost function K^{\prime}	$K^{\prime}(x)$
unit cost function (average cost function) \bar{K}	$\bar{K}(x)=\frac{K(x)}{x}$
variable unit cost function	$\overline{K_{v}}(x)=\frac{K_{v}(x)}{x}$
(variable average cost function) $\overline{K_{v}}$	$\bar{K}^{\prime}\left(x_{\text {op }}\right)=0$ (minimum of $\left.\bar{K}\right)$
minimum efficient scale $x_{\text {opt }}$	$\bar{K}\left(x_{\text {opt }}\right)$
long-term break-even price (cost-covering price)	$\overline{K_{v}}\left(x_{\text {min }}\right)=0\left(\right.$ minimum of $\left.\overline{K_{v}}\right)$
operating minimum $x_{\text {min }}$	$\overline{K_{v}}\left(x_{\text {min }}\right)$
short-term break-even price	$K^{\prime \prime}(x)=0$
point of inflexion of the cost function	$K^{\prime \prime}(x)>0$
progressive costs	$K^{\prime \prime}(x)<0$
degressive costs	$p_{N}(x)$
price p	$p_{A}(x)$
price function of demand (price-demand function) p_{N}	$p_{A}(x)=p_{N}(x)$
price function of supply p_{A}	$p_{N}(0)$
market equilibrium	$p_{N}(x)=0$
ceiling price	$\left.x_{u}, x_{0}\right]$
saturation amount	$C=\left(x_{0}, p_{N}\left(x_{0}\right)\right)$

24 Technical and Scientific Basics

$\varrho \ldots$ density	$t \ldots$ time
$m \ldots$ mass	$s \ldots$ distance
$V \ldots$ volume	$\vee \ldots$ velocity
$F \ldots$ force	$a \ldots$ acceleration
$W \ldots$ work done	$v_{0} \ldots$ initial velocity
$P \ldots$ power	

density	$\varrho=\frac{m}{V}$
force	$F=m \cdot a$
work done	$W=F \cdot s$
power	$P=\frac{W}{t}$

Motion

velocity for uniform linear motion

$$
v=\frac{s}{t}
$$

velocity for uniformly accelerated linear motion

$$
v=a \cdot t+v_{0}
$$

velocity in terms of the time t
$v(t)=s^{\prime}(t)$
acceleration in terms of the time t

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

A

absolute change 11
absolute frequency 15
absolute value (of a vector) 8
acceleration 22
accumulation factor 19
acquisition costs 20
amortisation table 19
amplitude 7
angle 7
angular frequency 7
annual interest rate 19, 20
annuity 19
annuity due 19
antiderivative 13
arc length (of a circle) 6
arc length (of a function) 14
area 5
area of the base 6
arithmetic mean 15
arithmetic sequence 11
arithmetic series 11
average cost function 21
average rate of change 11

B

Bayes' theorem 16
binomial coefficient 16
binomial distribution 17
binomial formulae 4
break-even point 21

C

carrying capacity 12
Cartesian form 8
ceiling price 21
centi- 3
chain rule 13
circle 6
common logarithm 4
complementary event 16
complex numbers 8
compound interest 19
conditional probability 16
cone 6
confidence interval 18
correlation coefficient 18
cosine 7
cosine rule 7
cost function 21
cost-covering price 21
cost-of-production and theory of value 21
Cournot's point 21
cube 6
cuboid 6
cumulative distribution function 17
cylinder 6

D

deca- 3
deci- 3
definite integral 13
degrees 7
degrees of freedom 18
degressive costs 21
demand vector 10
density 22
density function 17
derivative 13
difference (of sets) 3
difference quotient 11
differential equation 14
differential quotient 11
differentiation rules 13
direction vector 9
discrete random variable 17

E

effective annual interest rate 19
element 3
empty set 3
equation of a line 9
equilateral triangle 5
equivalent interest rates 19
expectation value 17
explicit rule 11
exponential decay 12
exponential growth 12

F

factorial 16
final capital 19
final value 19, 20
financial mathematics 19
fixed costs 21
force 22
frequency 7

G

general triangle 5,7
geometric mean 15
geometric sequence 11
geometric series 11
giga- 3
gradient 9
growth factor 12

H

hecto- 3
Heron's formula 5
homogeneous differential equation 14
hypotenuse 5,7

I

identity matrix 10
imaginary part 8
imputed interest rate 20
indefinite integral 13
infinite geometric series 11
initial investment 19
instantaneous rate of change 11
integers 3
integral 13
intercept theorem 5
interest 19
interest amount 19
interest rate 19
interference function 14
internal rate of return 20
interquartile range 15
intersection (of sets) 3
inverse matrix 10
investments 20

K

kilo- 3
kite 5

L

Laplace experiment 16
lateral surface area 6
limited decay 12
limited growth 12
line 9
linear decay 12
linear factorisation 4
linear growth 12
linear regression 18
linear substitution 14
linear system of equations 10
logarithms 4
logistic growth 12
long-term break-even price 21

M

manufacturing processes 10
marginal cost function 21
marginal profit function 21
marginal revenue function 21
market equilibrium 21
mass 22
material consumption matrix 10
matrix 10
mean 15
mean (of a function) 14
measures of central tendency 15
measures of spread 15
median 15
mega- 3
micro- 3
milli- 3
minimum efficient scale 21
modified internal rate of return 20
motion 22

N

nano- 3
natural logarithm 4
natural numbers 3
net present value 20
nonhomogeneous differential equation 14
normal distribution 17

0

operating duration 20
operating minimum 21
ordinary annuity 19
oscillation period 7

P

parallel vectors 9
parallelogram 5
percentage change 11
perimeter 5, 6
period length 7
perpendicular vector 8
pico- 3
point of inflexion of a cost
function 21
polar forms 8
power 22
powers 3
prediction interval 18
prefixes 3
present value 19
price 21
price function of demand 21
price function of supply 21
price-demand function 21
prism 6
probability 16, 17
product rule 13
production vector 10
profit function 21
profit limit 21
profit range 21
progressive costs 21
proper subset 3
pyramid 6
Pythagorean theorem 5

Q

quadratic equations 4
quadrilateral 5
quantile 18
quartile 15
quotient rule 13

R

radians 7
random variable 17
range 15
rates of change 11
rational exponent 3
rational numbers 3
real numbers 3
real part 8
rectangle 5
recursive rule 11
reinvestment interest rate 20
relative change 11
relative frequency 15
repayment amount 19
residual debt 19
returns 20
revenue function 21
rhombus 5
right-angled triangle 5,7
roots 3

S

sample 15,18
sample mean 18
sample size 18
saturation amount 21
saturation function 12
saturation value 12
scalar product 8
sector (of a circle) 6
separable differential equations 14
sequences 11
series 11
sets 3
sets of numbers 3
short-term break-even price 21 Z
sides (of a triangle) 5, 7
similarity 5
simple interest 19
sine 7
sine function 7
sine rule 7
slope 9
solids 6
solids of revolution 14
sphere 6
square 5
standard deviation 15, 17
standard normal distribution 17
statistics 15
subset 3
sum rule 13
surface area 6

T

tangent 7
t-distribution 18
tera- 3
transposed matrix 10
trapezoid 5
triangle 5
trigonometric formula for the area of a triangle 7
trigonometry 7
two-dimensional shapes 5

U

uniform linear motion 22
uniformly accelerated linear motion 22
union (of sets) 3
unit circle 7
unit cost function 21
unit vector 9

V

variable average cost function 21
variable cost function 21
variable unit cost function 21
variance 15, 17
vector equation of a line 9
vector product 9
vectors 8
velocity 22
Vieta's theorem 4
volume 6,14, 22

W

work done 22
zero phase angle 7

[^0]: ․ Bundesministerium Bildung, Wissenschaft und Forschung

