Formelsammlung

für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (SRP)

Mathematik (AHS)

Inhaltsverzeichnis

Kapitel		Seite
1	Mengen	3
2	Vorsilben	3
3	Potenzen	3
4	Logarithmen	4
5	Quadratische Gleichungen	4
6	Ebene Figuren	5
7	Körper	6
8	Trigonometrie	6
9	Vektoren	7
10	Geraden	8
11	Änderungsmaße	8
12	Ableitung und Integral	9
13	Statistik	9
14	Wahrscheinlichkeit	10
15	Größen und ihre Einheiten	12
16	Technisch-naturwissenschaftliche Grundlagen	13
17	Finanzmathematik	13
18	Kosten- und Preistheorie	13
	Index	14

1 Mengen

\in	ist Element von
∉	ist nicht Element von
\cap	Durchschnitt(smenge)
U	Vereinigung(smenge)
C	echte Teilmenge
⊆	Teilmenge
\	Differenzmenge ("ohne")
{}	leere Menge

Zahlenmengen

$\mathbb{N} = \{0, 1, 2,\}$	natürliche Zahlen
\mathbb{Z}	ganze Zahlen
Q	rationale Zahlen
\mathbb{R}	reelle Zahlen
\mathbb{C}	komplexe Zahlen
$\mathbb{R}^{^{+}}$	positive reelle Zahlen
\mathbb{R}_0^+	positive reelle Zahlen mit Null

2 Vorsilben

Tera-	Τ	1012	Dezi-	d	10 ⁻¹
Giga-	G	10 ⁹	Zenti-	С	10 ⁻²
	Μ		Milli-	m	10 ⁻³
Kilo-	k	10 ³	Mikro-	μ	10 ⁻⁶
Hekto-	h	10 ²	Nano-	n	10 ⁻⁹
Deka-	da	10 ¹	Pico-	р	10 ⁻¹²

3 Potenzen

Potenzen mit ganzzahligen Exponenten

 $a \in \mathbb{R}; n \in \mathbb{N}\setminus\{0\}$ $a \in \mathbb{R}\setminus\{0\}; n \in \mathbb{N}\setminus\{0\}$ $a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$ $a^1 = a$ $a^0 = 1$ $a^{-1} = \frac{1}{a}$ $a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$

Potenzen mit rationalen Exponenten (Wurzeln)

 $a, b \in \mathbb{R}_0^+$; $n, k \in \mathbb{N} \setminus \{0\}$ mit $n \ge 2$

$$a = \sqrt[n]{b} \iff a^n = b$$
 $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{k}{n}} = \sqrt[n]{a^k}$ $a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}}$ mit $a > 0$

Rechenregeln

$$a, b \in \mathbb{R} \setminus \{0\}; r, s \in \mathbb{Z}$$

bzw. $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$

$$a,b \in \mathbb{R}_0^+; m,n,k \in \mathbb{N} \setminus \{0\} \text{ mit } m,n \ge 2$$

$$a^r \cdot a^s = a^{r+s}$$

$$\frac{a^r}{a^s} = a^{r-s}$$

$$(a^r)^s = a^{r \cdot s}$$

$$(a \cdot b)^r = a^r \cdot b^r$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a^k} = (\sqrt[n]{a})^k$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \ (b \neq 0)$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

Binomische Formeln

$a, b \in \mathbb{R}; n \in \mathbb{N}$

$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

$$(a + b)^{n} = \sum_{k=0}^{n} {n \choose k} \cdot a^{n-k} \cdot b^{k}$$

$$(a - b)^{n} = \sum_{k=0}^{n} (-1)^{k} \cdot {n \choose k} \cdot a^{n-k} \cdot b^{k}$$

4 Logarithmen

$a, b, c \in \mathbb{R}^+$ mit $a \neq 1; x, r \in \mathbb{R}$

$$x = \log_a(b) \iff a^x = b$$

$$\log_a(b \cdot c) = \log_a(b) + \log_a(c) \qquad \log_a(b) - \log_a(b) - \log_a(c) \qquad \log_a(b^r) = r \cdot \log_a(b)$$

$$og_a(b^r) = r \cdot log_a(b)$$

$$\log_a(a^x) = x$$

$$\log_a(a)=1$$

$$\log_a(1) = 0$$

$$\log_a\!\left(\frac{1}{a}\right) = -1$$

natürlicher Logarithmus (Logarithmus zur Basis e): $ln(b) = log_e(b)$ dekadischer Logarithmus (Logarithmus zur Basis 10): $lg(b) = log_{10}(b)$

5 Quadratische Gleichungen

$p, q \in \mathbb{R}$

$$a, b, c \in \mathbb{R}$$
 mit $a \neq 0$

$$x^{2} + p \cdot x + q = 0$$
$$X_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$a \cdot x^2 + b \cdot x + c = 0$$
$$X_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Satz von Vieta

 x_1 und x_2 sind genau dann die Lösungen der Gleichung $x^2 + p \cdot x + q = 0$, wenn gilt:

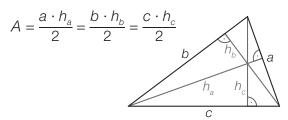
$$X_1 + X_2 = -p$$

$$X_1 \cdot X_2 = Q$$

Zerlegung in Linearfaktoren:

$$X^{2} + D \cdot X + Q = (X - X_{1}) \cdot (X - X_{2})$$

6 Ebene Figuren


A ... Flächeninhalt

u ... Umfang

Dreieck

$$u = a + b + c$$

Allgemeines Dreieck

Heron'sche Flächenformel

$$A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \text{ mit } s = \frac{a + b + c}{2}$$

Rechtwinkeliges Dreieck mit Hypotenuse *c* und Katheten *a*, *b*

$$A = \frac{a \cdot b}{2} = \frac{c \cdot h_c}{2}$$

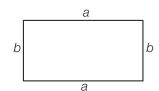
Satz des Pythagoras

$$a^2 + b^2 = c^2$$

Viereck

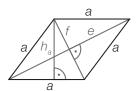
Quadrat

$$A = a^2$$


$$u = 4 \cdot a$$

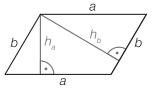
Rechteck

$$A = a \cdot b$$


$$u = 2 \cdot a + 2 \cdot b$$

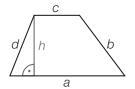
Raute (Rhombus)

$$A = a \cdot h_a = \frac{e \cdot f}{2}$$


$$u = 4 \cdot a$$

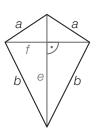
Parallelogramm

$$A = a \cdot h_a = b \cdot h_b$$


$$u = 2 \cdot a + 2 \cdot b$$

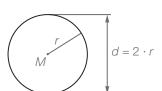
Trapez

$$A = \frac{(a+c)\cdot h}{2}$$


$$u = a + b + c + d$$

Deltoid

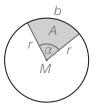
$$A = \frac{e \cdot f}{2}$$


$$u = 2 \cdot a + 2 \cdot b$$

Kreis

$$A=\pi\cdot r^2=\frac{\pi\cdot d^2}{4}$$

$$u = 2 \cdot \pi \cdot r = \pi \cdot d$$



Kreisbogen und Kreissektor

α im Gradmaß (°)

$$d = 2 \cdot r \qquad b = \pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$$

$$A = \pi \cdot r^{2} \cdot \frac{\alpha}{360^{\circ}} = \frac{b \cdot r}{2}$$

7 Körper

V... Volumen

O ... Inhalt der Oberfläche

G... Inhalt der Grundfläche

M ... Inhalt der Mantelfläche

u_G ... Umfang der Grundfläche

Prisma

$$V = G \cdot h$$

$$M = u_{\rm G} \cdot h$$

$$O = 2 \cdot G + M$$

Drehzylinder

$$V = G \cdot h$$

$$M = u_{\rm G} \cdot h$$

$$O = 2 \cdot G + M$$

Pyramide

$$V = \frac{G \cdot h}{3}$$

$$O = G + M$$

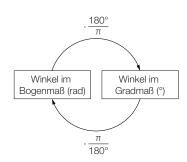
Drehkegel

$$V = \frac{G \cdot h}{3}$$

$$M = \pi \cdot r \cdot s$$

$$O = G + M$$

Kugel

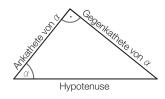

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

$$O = 4 \cdot \pi \cdot r^2$$

Trigonometrie

Umrechnung zwischen Gradmaß und Bogenmaß

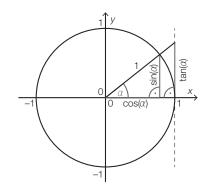
Trigonometrie im rechtwinkeligen Dreieck


$$sin(\alpha) =$$

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

Cosinus:
$$cos(\alpha) = \frac{Ankathete von \alpha}{Hypotenuse}$$

Tangens:
$$tan(\alpha)$$


Tangens:
$$tan(\alpha) = \frac{Gegenkathete von \alpha}{Ankathete von \alpha}$$

Trigonometrie im Einheitskreis

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \text{ für } \cos(\alpha) \neq 0$$

9 Vektoren

P, Q ... Punkte

Vektoren in \mathbb{R}^2

Pfeil von P nach Q:

$$P = (p_1 | p_2), Q = (q_1 | q_2)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$$

Rechenregeln in R²

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \end{pmatrix}$$

$$k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix} \text{ mit } k \in \mathbb{R}$$

Skalarprodukt in \mathbb{R}^2

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

Betrag (Länge) eines Vektors in \mathbb{R}^2

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$

Normalvektoren zu $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in \mathbb{R}^2

$$\overrightarrow{n} = k \cdot \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$$
 mit $k \in \mathbb{R} \setminus \{0\}$ und $|\overrightarrow{a}| \neq 0$

Orthogonalitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b} \text{ mit } |\vec{a}| \neq 0; |\vec{b}| \neq 0$$

Vektoren in \mathbb{R}^n

Pfeil von P nach Q:

$$P = (p_1|p_2|...|p_n), Q = (q_1|q_2|...|q_n)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - \rho_1 \\ q_2 - \rho_2 \\ \vdots \\ q_n - \rho_n \end{pmatrix}$$

Rechenregeln in \mathbb{R}^n

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$

$$k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \\ \vdots \\ k \cdot a_n \end{pmatrix} \text{ mit } k \in \mathbb{R}$$

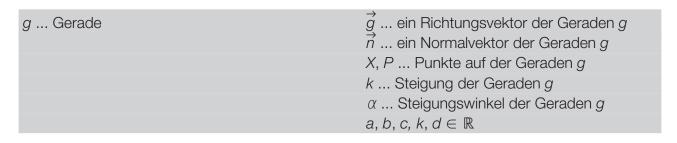
Skalarprodukt in \mathbb{R}^n

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

Betrag (Länge) eines Vektors in \mathbb{R}^n

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Winkel φ zwischen \overrightarrow{a} und \overrightarrow{b} in \mathbb{R}^2 und \mathbb{R}^3


$$\cos(\varphi) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} \text{ mit } |\overrightarrow{a}| \neq 0; |\overrightarrow{b}| \neq 0$$

Parallelitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b} \text{ mit } k \in \mathbb{R} \setminus \{0\}$$

$$\text{und } |\vec{a}| \neq 0; |\vec{b}| \neq 0$$

10 Geraden

Parameterdarstellung einer Geraden g in \mathbb{R}^2 und \mathbb{R}^3

$$g: X = P + t \cdot \overrightarrow{g} \text{ mit } t \in \mathbb{R}$$

Gleichung einer Geraden g in \mathbb{R}^2

explizite Form der Geradengleichung: $g: y = k \cdot x + d$ dabei gilt $k = \tan(\alpha)$ allgemeine Geradengleichung: $g: a \cdot x + b \cdot y = c$ Normalvektordarstellung: $g: \vec{n} \cdot X = \vec{n} \cdot P$ dabei gilt $\vec{n} \parallel \begin{pmatrix} a \\ b \end{pmatrix}$ für $\begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

11 Änderungsmaße

Für eine auf einem Intervall [a; b] definierte reelle Funktion f gilt:

Absolute Änderung von f in [a; b]

$$f(b) - f(a)$$

Relative (prozentuelle) Änderung von f in [a; b]

$$\frac{f(b) - f(a)}{f(a)} \text{ mit } f(a) \neq 0$$

Differenzenquotient (mittlere Änderungsrate) von f in [a; b] bzw. $[x; x + \Delta x]$

$$\frac{f(b) - f(a)}{b - a}$$
 bzw. $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ mit $b \neq a$ bzw. $\Delta x \neq 0$

Differenzialquotient (lokale bzw. "momentane" Änderungsrate) von f an der Stelle x

$$f'(x) = \lim_{x_1 \to x} \frac{f(x_1) - f(x)}{x_1 - x}$$
 bzw. $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

12 Ableitung und Integral

 $f,\,g,\,h\,\dots$ auf ganz $\mathbb R$ oder in einem Intervall definierte differenzierbare Funktionen

f' ... Ableitungsfunktion von f

F... Stammfunktion von f

g' ... Ableitungsfunktion von g

G ... Stammfunktion von g

h' ... Ableitungsfunktion von h

H ... Stammfunktion von h

 $C, k, q \in \mathbb{R}; a \in \mathbb{R}^+ \setminus \{1\}$

Unbestimmtes Integral Bestimmtes Integral

$$\int f(x) dx = F(x) + C \text{ mit } F' = f$$

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Funktion	Ableitungsfunktion	Stammfunktion
f(x) = k	f'(x)=0	$F(x) = k \cdot x$
$f(x) = x^q$	$f'(x) = q \cdot x^{q-1}$	$F(x) = \frac{x^{q+1}}{q+1} \text{ für } q \neq -1$ $F(x) = \ln(x) \text{ für } q = -1$
$f(x) = e^x$	$f'(x)=e^x$	$F(x) = e^x$
$f(x) = a^x$	$f'(x) = \ln(a) \cdot a^x$	$F(x) = \frac{a^x}{\ln(a)}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	$F(x) = \sin(x)$
$g(x) = k \cdot f(x)$	$g'(x) = k \cdot f'(x)$	$G(x) = k \cdot F(x)$
$h(x) = f(x) \pm g(x)$	$h'(x) = f'(x) \pm g'(x)$	$H(x) = F(x) \pm G(x)$
$g(x) = f(k \cdot x)$	$g'(x) = k \cdot f'(k \cdot x)$	$G(x) = \frac{1}{k} \cdot F(k \cdot x)$

13 Statistik

 x_1, x_2, \dots, x_n ... eine Liste von n reellen Zahlen $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$... geordnete Liste mit n Werten

Arithmetisches Mittel

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$

Median

$$\tilde{X} = \begin{cases} X_{\left(\frac{n+1}{2}\right)} & \dots \text{ für } n \text{ ungerade} \\ \frac{1}{2} \cdot \left(X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}\right) \dots \text{ für } n \text{ gerade} \end{cases}$$

Streuungsmaße

 $s^2 \dots$ (empirische) Varianz einer Datenliste

s ... (empirische) Standardabweichung einer Datenliste

$$S^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$S = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Wenn aus einer Stichprobe vom Umfang n die Varianz einer Grundgesamtheit geschätzt werden soll:

$$S_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2$$

$$S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

14 Wahrscheinlichkeit

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N} \text{ mit } k \leq n$

A, B ... Ereignisse

 $\neg A$ bzw. \overline{A} ... Gegenereignis von A

 $A \wedge B$ bzw. $A \cap B \dots A$ und B (sowohl das Ereignis A als auch das Ereignis B treten ein)

 $A \vee B$ bzw. $A \cup B \dots A$ oder B (mindestens eines der beiden Ereignisse A und B tritt ein)

P(A) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A

P(A|B) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A unter der Voraussetzung, dass B eingetreten ist (bedingte Wahrscheinlichkeit)

Fakultät (Faktorielle)

$$n! = n \cdot (n - 1) \cdot ... \cdot 1$$
 $0! = 1$

$$1! = 1 \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Wahrscheinlichkeit bei einem Laplace-Versuch

$$P(A) = \frac{\text{Anzahl der für } A \text{ günstigen Ausgänge}}{\text{Anzahl der möglichen Ausgänge}}$$

Elementare Regeln

$$P(\neg A) = 1 - P(A)$$

$$P(A \wedge B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

$$P(A \land B) = P(A) \cdot P(B)$$
 ... wenn A und B (stochastisch) unabhängig voneinander sind

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

$$P(A \lor B) = P(A) + P(B) \dots$$
 wenn A und B unvereinbar sind

Erwartungswert μ einer diskreten Zufallsvariablen X mit den Werten x_1, x_2, \dots, x_n

$$\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots + x_n \cdot P(X = x_n) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

Varianz σ^2 einer diskreten Zufallsvariablen X mit den Werten $x_1, x_2, ..., x_n$

$$\sigma^2 = V(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i)$$

Standardabweichung σ

$$\sigma = \sqrt{V(X)}$$

Binomialverteilung

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}; p \in \mathbb{R} \text{ mit } k \leq n \text{ und } 0 \leq p \leq 1$

Zufallsvariable X ist binomialverteilt mit den Parametern n und p

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

$$E(X) = \mu = n \cdot p$$

$$V(X) = \sigma^2 = n \cdot p \cdot (1 - p)$$

Normalverteilung

 $\mu, \sigma \in \mathbb{R} \text{ mit } \sigma > 0$

f ... Dichtefunktion

 ϕ ... Dichtefunktion der Standardnormalverteilung

 ϕ ... Verteilungsfunktion der Standardnormalverteilung

Normalverteilung $N(\mu; \sigma^2)$: Zufallsvariable X ist normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ bzw. der Varianz σ^2

$$P(X \le x_1) = \int_{-\infty}^{x_1} f(x) \, \mathrm{d}x = \int_{-\infty}^{x_1} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \frac{(x - \mu)^2}{\sigma}} \, \mathrm{d}x$$

Wahrscheinlichkeiten für σ -Umgebungen

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.683$$

$$P(\mu - 2 \cdot \sigma \le X \le \mu + 2 \cdot \sigma) \approx 0.954$$

$$P(\mu - 3 \cdot \sigma \le X \le \mu + 3 \cdot \sigma) \approx 0.997$$

Standardnormalverteilung N(0; 1)

$$Z = \frac{X - \mu}{\sigma}$$

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} \varphi(x) \, \mathrm{d}x = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

$$\phi(-z)=1-\phi(z)$$

$$P(-z \le Z \le z) = 2 \cdot \phi(z) - 1$$

$$P(-z \le Z \le z)$$
 = 90 %
 = 95 %
 = 99 %

 z
 $\approx 1,645$
 $\approx 1,960$
 $\approx 2,576$

Konfidenzintervall

h ... relative Häufigkeit in einer Stichprobe

p... unbekannter relativer Anteil in der Grundgesamtheit

y ... Konfidenzniveau (Vertrauensniveau)

 γ -Konfidenzintervall für p (diejenigen Werte p, in deren γ -Schätzbereich der Wert h liegt):

$$\left[h-z\cdot\sqrt{\frac{h\cdot(1-h)}{n}};h+z\cdot\sqrt{\frac{h\cdot(1-h)}{n}}\right]$$
, wobei für z gilt: $\gamma=2\cdot\phi(z)-1$

15 Größen und ihre Einheiten

Größe Temperatur	Einheit Grad Celsius bzw. Kelvin	Symbol °C K	Beziehung $\Delta t = \Delta T$
Frequenz	Hertz	Hz	1 Hz = 1 s ⁻¹
Energie, Arbeit, Wärmemenge	Joule	J	$1 J = 1 kg \cdot m^2 \cdot s^{-2}$
Kraft	Newton	N	$1 N = 1 kg \cdot m \cdot s^{-2}$
Drehmoment	Newtonmeter	N⋅m	$1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
elektrischer Widerstand	Ohm	Ω	1 Ω = 1 V · A ⁻¹ = 1 kg · m ² · A ⁻² · s ⁻³
Druck	Pascal	Pa	1 Pa = 1 N · m ⁻² = 1 kg · m ⁻¹ · s ⁻²
elektrische Stromstärke	Ampere	Α	$1 A = 1 C \cdot s^{-1}$
elektrische Spannung	Volt	V	$1 V = 1 \cdot J \cdot C^{-1}$ = 1 kg \cdot m^2 \cdot A^{-1} \cdot s^{-3}
Leistung	Watt	W	$1 W = 1 J \cdot s^{-1}$ = 1 kg · m ² · s ⁻³

16 Technisch-naturwissenschaftliche Grundlagen

Dichte	$\varrho = \frac{m}{V}$		
Leistung	$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$	$P = \frac{dW}{dt}$	
Kraft	$F = m \cdot a$		
Arbeit	$W = F \cdot s$		
	$W = \int F(s) ds$	$F = \frac{dW}{ds}$	
kinetische Energie	$E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$		
potenzielle Energie	$E_{\text{pot}} = m \cdot g \cdot h$		
gleichförmige geradlinige Bewegung	$V = \frac{S}{t}$	$v = \frac{ds}{dt}$	V(t) = S'(t)
gleichmäßig beschleunigte geradlinige Bewegung	$v = a \cdot t + v_0$	$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$	a(t) = v'(t) = s''(t)

17 Finanzmathematik

Zinseszinsrechnung

 $K_0 \dots$ Anfangskapital

 K_n ... Endkapital

p ... Jahreszinssatz in Prozent

$$K_n = K_0 \cdot (1+i)^n \text{ mit } i = \frac{p}{100}$$

18 Kosten- und Preistheorie

x produzierte, angebotene, nac	hgefragte bzw. verkaufte Menge ($x \ge 0$)
variable Kosten	$K_{\nu}(x)$
Fixkosten	K_{f}
(Gesamt-)Kosten	$K(x) = K_{v}(x) + K_{f}$
Grenzkosten	K'(x)
Nachfragepreis	p(x)
Erlös/Ertrag	$E(x) = p(x) \cdot x$
Grenzerlös	E'(x)
Gewinn	G(x) = E(x) - K(x)
Grenzgewinn	G'(x)
Break-even-Point/Gewinnschwell	e $E(x) = K(x)$ bei (erster) Nullstelle x der Gewinnfunktion

Index

A Ableitung 9 Ableitungsfunktion 9 absolute Änderung 8 allgemeines Dreieck 5 Ampere 12 Änderungsmaße 8 Änderungsrate 8 Anfangskapital 13 Ankathete 6 Arbeit 12, 13	Endkapital 13 Energie 12, 13 Ereignisse 10 Erlös 13 Ertrag 13 Erwartungswert 10 Exponent 3 F Faktorielle 10 Fakultät 10	Konfidenzintervall 11 Konfidenzniveau 11 Körper 6 Kosten 13 Kosten- und Preistheorie 13 Kraft 12, 13 Kreis 5 Kreisbogen 5 Kreissektor 5 Kugel 6
arithmetisches Mittel 9	Finanzmathematik 13 Fixkosten 13	L Laplace-Versuch 10
B bedingte Wahrscheinlichkeit 10 bestimmtes Integral 9 Betrag eines Vektors 7 Binomialkoeffizient 10 Binomialverteilung 10	Flächeninhalt 5 Frequenz 12 G ganze Zahlen 3 Gegenereignis 10	leere Menge 3 Leistung 12, 13 Linearfaktoren 4 Logarithmen 4 lokale Änderungsrate 8
binomische Formeln 4 Bogenmaß 6 Break-even-Point 13	Gegenkathete 6 Geraden 8 Geradengleichung 8	M Mantelfläche 6 Median 9
C Celsius 12 Cosinus 6	Gesamtkosten 13 Gewinn 13 Gewinnschwelle 13 Giga- 3 Gleichförmige geradlinige	Mega- 3 Mengen 3 Mikro- 3 Milli- 3 mittlere Änderungerete 8
D Deka- 3	gleichförmige geradlinige Bewegung 13 gleichmäßig beschleunigte	mittlere Änderungsrate 8 momentane Änderungsrate 8
dekadischer Logarithmus 4 Deltoid 5 Dezi- 3	geradlinige Bewegung 13 Grad Celsius 12 Gradmaß 6	N Nachfragepreis 13 Nano- 3
Dichte 13 Dichtefunktion 11 Differenzenquotient 8 Differenzialquotient 8 Differenzmenge 3	Grenzerlös 13 Grenzgewinn 13 Grenzkosten 13 Größen 12 Grundfläche 6	natürliche Zahlen 3 natürlicher Logarithmus 4 Newton 12 Newtonmeter 12 Normalvektor 7,8
diskrete Zufallsvariable 10 Drehkegel 6 Drehmoment 12	H Hekto- 3	Normalvektordarstellung 8 Normalverteilung 11
Drehzylinder 6 Dreieck 5 Druck 12 Durchschnitt(smenge) 3	Heron'sche Flächenformel 5 Hertz 12 Hypotenuse 5	O Oberfläche 6 Ohm 12 Orthogonalitätskriterium 7
ebene Figuren 5 echte Teilmenge 3 Einheiten 12 Einheitskreis 7 elektrische Spannung 12 elektrische Stromstärke 12 elektrischer Widerstand 12 Element 3 empirische Standard- abweichung 9 empirische Varianz 9	Integral 9 J Jahreszinssatz 13 Joule 12 K Kathete 5 Kelvin 12 Kilo- 3 kinetische Energie 13 komplexe Zahlen 3	Parallelitätskriterium 7 Parallelogramm 5 Parameterdarstellung 8 Pascal 12 physikalische Größen 13 Pico- 3 Potenzen 3 potenzielle Energie 13 Prisma 6 prozentuelle Änderung 8 Pyramide 6
	ποιτιριέλε Ζαιτίειτ ο	i yraitiid e O

Q

Quadrat 5 quadratische Gleichungen 4

R

rationale Zahlen 3
Raute 5
Rechenregeln 4
Rechteck 5
rechtwinkeliges Dreieck 5, 6
reelle Zahlen 3
relative Änderung 8
relative Häufigkeit 11
Rhombus 5
Richtungsvektor 8

S

Satz des Pythagoras 5
Satz von Vieta 4
Sigma-Umgebungen 11
Sinus 6
Skalarprodukt 7
Spannung 12
Stammfunktion 9
Standardabweichung 9, 10
Standardnormalverteilung 11
Statistik 9
Steigung 8
Steigungswinkel 8
Stichprobe 9
Streuungsmaße 9
Stromstärke 12

Т

Tangens 6
Teilmenge 3
Temperatur 12
Tera- 3
Trapez 5
Trigonometrie 6, 7

U

Umfang 5, 6 unbestimmtes Integral 9

٧

variable Kosten 13
Varianz 9, 10
Vektoren 7
Vereinigung(smenge) 3
Verteilungsfunktion 11
Vertrauensniveau 11
Viereck 5
Volt 12
Volumen 6
Vorsilben 3

W

Wahrscheinlichkeit 10 Wärmemenge 12 Watt 12 Widerstand 12 Winkel 6 Winkel zwischen Vektoren 7 Wurzeln 3

Ζ

Zahlenmengen 3 Zenti- 3 Zinseszinsrechnung 13 Zufallsvariable 10

 σ -Umgebungen 11