Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung bzw. zur standardisierten kompetenzorientierten schriftlichen Berufsreifeprüfung

Juni 2018

Angewandte Mathematik (BHS) Berufsreifeprüfung Mathematik

Kompensationsprüfung 5 Angabe für **Kandidatinnen/Kandidaten**

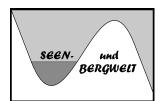
Hinweise zur Aufgabenbearbeitung

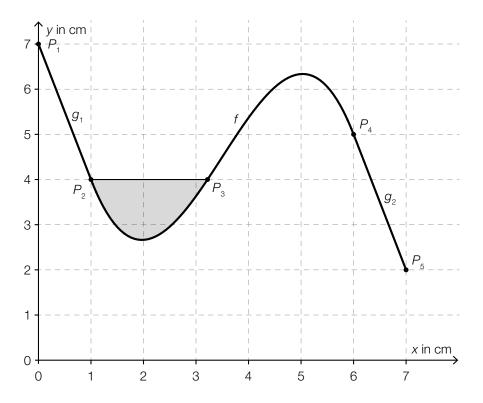
Sehr geehrte Kandidatin, sehr geehrter Kandidat!

Die vorliegende Aufgabenstellung enthält 3 Teilaufgaben. Die Teilaufgaben sind unabhängig voneinander bearbeitbar. Die Vorbereitungszeit beträgt mindestens 30 Minuten, die Prüfungszeit maximal 25 Minuten.

Die Verwendung von durch die Schulbuchaktion approbierten Formelheften bzw. von der Formelsammlung für die SRDP in Angewandter Mathematik und von elektronischen Hilfsmitteln (z. B. grafikfähiger Taschenrechner oder andere entsprechende Technologie) ist erlaubt, sofern keine Kommunikationsmöglichkeit (z. B. via Internet, Intranet, Bluetooth, Mobilfunknetzwerke etc.) gegeben ist und keine Eigendaten in die elektronischen Hilfsmittel implementiert sind. Handbücher zu den elektronischen Hilfsmitteln sind in der Original-Druckversion oder in im elektronischen Hilfsmittel integrierter Form zulässig.

Handreichung für die Bearbeitung


- Jede Berechnung ist mit einem nachvollziehbaren Rechenansatz und einer nachvollziehbaren Dokumentation des Technologieeinsatzes (die verwendeten Ausgangsparameter und die verwendete Technologiefunktion müssen angegeben werden) durchzuführen.
- Selbst gewählte Variablen sind zu erklären und gegebenenfalls mit Einheiten zu benennen.
- Ergebnisse sind eindeutig hervorzuheben.
- Ergebnisse sind mit entsprechenden Einheiten anzugeben.
- Werden Diagramme oder Skizzen als Lösungen erstellt, so sind die Achsen zu skalieren und zu beschriften.
- Werden geometrische Skizzen erstellt, so sind die lösungsrelevanten Teile zu beschriften.
- Vermeiden Sie frühzeitiges Runden.
- Falls Sie am Computer arbeiten, beschriften Sie vor dem Ausdrucken jedes Blatt, sodass dieses Ihnen eindeutig zuzuordnen ist.
- Wird eine Aufgabe mehrfach gerechnet, so sind alle Lösungswege bis auf einen zu streichen.


Es gilt folgender Beurteilungsschlüssel:

Gesamtanzahl der nachgewiesenen Handlungskompetenzen	Beurteilung der mündlichen Kompensationsprüfung
12	Sehr gut
11	Gut
10 9	Befriedigend
8 7	Genügend
6 5 4 3 2 1 0	Nicht genügend

Viel Erfolg!

1) Eine Werbeagentur entwirft für eine Tourismusregion in den Alpen ein neues Logo (siehe nebenstehende Abbildung). Dabei werden zur Modellierung die Funktionen g_1 (für $0 \le x \le 1$), f (für $1 \le x \le 6$) und g_2 (für $6 \le x \le 7$) verwendet (siehe nachstehende Abbildung).

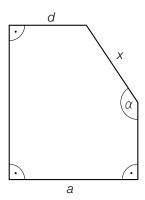
– Stellen Sie eine Gleichung der linearen Funktion g_2 auf, deren Graph durch die Punkte P_4 und P_5 verläuft. (A)

Die Fläche zwischen der waagrechten Strecke P_2P_3 und dem Graphen der Funktion f soll eingefärbt werden.

Für die Funktion f gilt:

$$f(x) = -\frac{32}{125} \cdot x^3 + \frac{336}{125} \cdot x^2 - \frac{951}{125} \cdot x + \frac{1147}{125} \text{ mit } 1 \le x \le 6$$

x, f(x) ... Koordinaten in cm


- Berechnen Sie den Inhalt der grau markierten Fläche.
- Berechnen Sie die Stelle der maximalen Steigung der Funktion f. (B)

Verpflichtende verbale Fragestellung:

– Überprüfen Sie nachweislich, ob die lineare Funktion g_1 mit $g_1(x) = -3 \cdot x + 7$ und die Funktion f im Punkt P_2 die gleiche Steigung haben. (R)

(B)

2) Der Grundriss eines Weingartens hat folgende Form:

– Stellen Sie mithilfe von a, d und α eine Formel zur Berechnung von x auf.

$$X =$$
 (A)

Wein wird in Flaschen abgefüllt. Die Füllmenge kann als annähernd normalverteilt mit dem Erwartungswert $\mu = 1$ L und der Standardabweichung $\sigma = 0,005$ L angenommen werden.

 Berechnen Sie die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche eine Füllmenge von weniger als 0,99 L hat.

Der Alkoholgehalt von Getränken wird üblicherweise in Prozent des Volumens angegeben. Ein bestimmter Weißwein hat 12 % Alkoholgehalt. Der Alkoholgehalt von Wasser beträgt 0 %.

Sebastian mischt $\frac{1}{4}$ L dieses Weißweins mit $\frac{1}{8}$ L Wasser und erhält $\frac{3}{8}$ L Mischung.

Berechnen Sie den Alkoholgehalt dieser Mischung.

Verpflichtende verbale Fragestellung:

Der Wein wird in einem zylindrischen Tank gelagert.

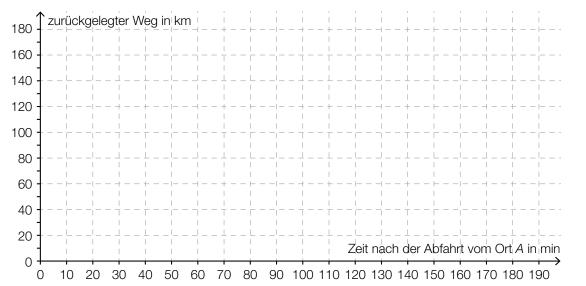
 Zeigen Sie, dass das Volumen des Tanks um 56,25 % zunimmt, wenn der Radius um ein Viertel vergrößert wird und die Höhe gleich bleibt.

(B)

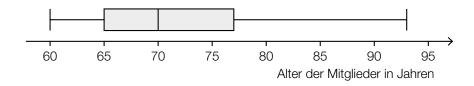
3) Ein Pensionistenverein plant einen Ausflug.

Die Kosten für den Bus betragen € 336 und werden auf alle *n* teilnehmenden Personen gleichmäßig aufgeteilt. Am Tag des Ausflugs sind 3 Personen erkrankt und nehmen deshalb nicht am Ausflug teil. Daher musste jede tatsächlich teilnehmende Person € 2 mehr bezahlen als ursprünglich geplant.

Vereinfacht werden im Folgenden alle Geschwindigkeiten jeweils als konstant angenommen.


Der Bus fährt zunächst mit einer Geschwindigkeit von 60 km/h vom Ort A zum 10 km entfernten Ort B. Dort gibt es einen 10-minütigen Zwischenaufenthalt.

Danach fährt der Bus 70 km weit zum Ort C. Diese Fahrt dauert 50 Minuten.


Nach einem weiteren Aufenthalt von 40 Minuten fährt der Bus noch 80 km weit zum Ort D. Diese letzte Fahrt dauert 1 Stunde und 20 Minuten.

- Veranschaulichen Sie im nachstehenden Koordinatensystem die oben beschriebene Fahrt.

Im nachstehenden Boxplot ist die Altersverteilung der 121 Mitglieder eines Pensionistenvereins dargestellt.

Begründen Sie anhand des Boxplots, warum mindestens eines dieser 121 Mitglieder genau
70 Jahre alt ist.

Verpflichtende verbale Fragestellung:

s ist die Weg-Zeit-Funktion einer bestimmten Fahrt im Zeitintervall $[t_1; t_2]$.

Zu einer bestimmten Zeit t_3 dieser Fahrt gilt: $s'(t_3) > \frac{s(t_2) - s(t_1)}{t_2 - t_1}$

Beschreiben Sie die Bedeutung dieser Aussage im gegebenen Sachzusammenhang.