Name:	Date:			
Class:				

Supplementary Examination for the Standardised Competence-Oriented Written School-Leaving Examination

AHS
May 2019

Mathematics

Supplementary Examination 6 Candidate's Version

Instructions for the supplementary examination

Dear candidate,
The following supplementary examination is comprised of five tasks that can be completed independently of one another.

Each task contains two parts: The statement of the task requires you to demonstrate core competencies, and the guiding question that follows it requires you to demonstrate your ability to communicate your ideas.

You will be given preparation time of at least 30 minutes, and the examination will last at the most 25 minutes.

Assessment

Each task can be awarded zero, one or two points. There is one point available for each demonstration of core competencies as well as for each guiding question. A maximum of 10 points can be achieved.

For the grading of the examination the following scale will be used:

Grade	Number of points
Pass	4 points for the core competencies + 0 points for the guiding questions 3 points for the core competencies + 1 point for the guiding questions
Satisfactory	5 points for the core competencies + 0 points for the guiding questions 4 points for the core competencies + 1 point for the guiding questions 3 points for the core competencies + 2 points for the guiding questions
Good	5 points for the core competencies + 1 point for the guiding questions 4 points for the core competencies + 2 points for the guiding questions 3 points for the core competencies + 3 points for the guiding questions
Very good	5 points for the core competencies + 2 (or more) points for the guiding questions 4 points for the core competencies + 3 (or more) points for the guiding questions

The examination board will decide on the final grade based on your performance in the supplementary examination as well as the result of the written examination.

Good Luck!

Task 1

Lines in \mathbb{R}^{2}

Let A and B be points where $A=(5,1)$ and $B=(1,2)$.

Task:

The lines p, n and s each go through the point A and can be described as follows:

- The line p is parallel to the x-axis.
- The line n is perpendicular to the x-axis.
- The line s has a gradient of 1 .

Write down an equation for each of the three lines.

Guiding question:

A line $g: y=k \cdot x+d$ goes through the point B and makes an angle of α to the horizontal.
Write down expressions for k and d in terms of the angle α.
$k=$ \qquad
$d=$ \qquad

Write down the size of the angle $\alpha \in\left[0^{\circ}, 90^{\circ}\right)$ for which the lines g and p do not intersect.
The line g_{1} goes through the point B and has the same gradient as the line s. Determine the point of intersection, S, of the line n and the line g_{1}.

Task 2

Barometric Altitude Formula

The relationship between the height h above sea level and the air pressure $p(h)$ at that height can be approximated by the barometric altitude formula:
$p(h)=p_{0} \cdot e^{-\frac{h}{7991}}$
h... height above sea level in metres (m)
$p(h) \ldots$ air pressure at a height of h in hectopascals (hPa)
$p_{0} \ldots$ air pressure at sea level (at $h=0$); $p_{0}>0$
Task:

Determine the height h_{1} at which the air pressure is only 80% of p_{0}.

Guiding question:

The relationship between the height above sea level and the air pressure in the interval [0 m, 3500 m] can be approximated by a linear function f (in terms of h).

On a particular day the following values were obtained:

Height above sea level in m	Air pressure in hPa
1500	840
2000	790

Determine an equation of this function f so that it reflects the measured values.
For the height h_{1} found above, determine the difference (in hPa) between the value of $p\left(h_{1}\right)$ calculated using the barometric altitude formula and the value calculated using the linear function f. In your calculations, assume that the value of p_{0} in the function p is 1013 hPa .

Task 3

Rates of Change

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function where $f(x)=x^{2}-2 \cdot x-1$.

Task:

Determine the differential quotient of f when $x=1$ and write down the meaning of this value in terms of the behaviour of the graph.

Guiding question:

Write down an expression in terms of the parameter $a(a \in \mathbb{R}$ and $a<3)$ that can be used to calculate the difference quotient of f in the interval [a, 3].

Determine the value of the parameter a such that this difference quotient is equal to the differential quotient of f when $x=1$.

Task 4

Rain Water

There are 20 litres of water in a water butt.
From the time $t=0$ the amount of water in the butt changes. The function f describes the instantaneous rate of change of the amount of water in the butt in terms of time $(f(t)$ is measured in litres per hour, t is measured in hours).
The diagram below shows the graph of the function f.

Task:

Write down at which point in time marked in the diagram above (from t_{1} to t_{4}) the amount of water in the butt is highest and justify your decision.

Guiding question:
Write down a formula for the amount of water M in the butt at time t_{4}.
In the diagram above in the interval $\left[0, t_{4}\right.$), label the approximate time t^{*} at which there is exactly the same amount of water in the butt as at t_{4}. Explain your method.

Task 5

Multi-Step Random Experiment

In a game three urns, each containing six balls, are used. Urn A contains five white balls and one black ball, urn B contains four white and two black balls, and urn C contains three white and three black balls. A player wins the game if a white ball is selected.

Victoria participates in this game and thus has to complete the following steps:
First, she chooses one urn and takes a ball out of this urn. In both cases (the choice of the urn and the choice of the ball) the selections are made at random.

Task:

Determine the probability that Victoria wins the game.

Guiding question:

In one option of the game, twelve white and six black balls are being distributed anew, whereby there are six balls again in each of the three urns. In the first urn there are x white balls now, in the second urn there are y white balls, and in the third urn there are z white balls.
Show by calculation that the probability of Victoria winning does not change.

