Formula Booklet

for the Standardised Competence-Oriented Written School-Leaving Examination (SRP)

Mathematics (AHS)

Table of Contents

Chapter Page
1 Sets 3
2 Prefixes 3
3 Powers 3
4 Logarithms 4
5 Quadratic Equations 4
6 Two-Dimensional Shapes 5
7 Solids 6
8 Trigonometry 6
9 Vectors 7
10 Straight Lines 8
11 Rates of Change 8
12 Differentiation and Integration 9
13 Statistics 9
14 Probability 10
15 Units of Measurement 12
16 Technical and Scientific Basics 13
17 Financial Mathematics 13
18 Cost-of-Production and Theory of Value 13
Index 14

1 Sets

\in	is an element of...
\notin	is not an element of...
\bigcirc	intersection
\cup	union
\subset	proper subset
\subseteq	subset
1	difference ("without")
\{ \}	empty set

Sets of numbers

$\mathbb{N}=\{0,1,2, \ldots\}$	natural numbers
\mathbb{Z}	integers
\mathbb{Q}	rational numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
\mathbb{R}^{+}	positive real numbers
\mathbb{R}_{0}^{+}	positive real numbers including zero

2 Prefixes

tera-	T	10^{12}	deci-	d	10^{-1}
giga-	G	10^{9}	centi-	c	10^{-2}
mega-	M	10^{6}	milli-	m	10^{-3}
kilo-	k	10^{3}	micro-	μ	10^{-6}
hecto-	h	10^{2}	nano-	n	10^{-9}
deca-	da	10^{1}	pico-	p	10^{-12}

3 Powers

Powers with integer exponents

$a \in \mathbb{R} ; n \in \mathbb{N} \backslash\{0\} \quad a \in \mathbb{R} \backslash\{0\} ; n \in \mathbb{N} \backslash\{0\}$

$a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a}$
$a^{1}=a$
$a^{0}=1$
$a^{-1}=\frac{1}{a}$
$a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}$
n factors

Powers with rational exponents (roots)
$a, b \in \mathbb{R}_{0}^{+} ; n, k \in \mathbb{N} \backslash\{0\}$ where $n \geq 2$
$a=\sqrt[n]{b} \Leftrightarrow a^{n}=b$
$a^{\frac{1}{n}}=\sqrt[n]{a}$
$a^{\frac{k}{n}}=\sqrt[n]{a^{k}}$
$a^{-\frac{k}{n}}=\frac{1}{\sqrt[n]{a^{k}}}$ where $a>0$

Calculation rules
$a, b \in \mathbb{R} \backslash\{0\} ; r, s \in \mathbb{Z}$
$a, b \in \mathbb{R}_{0}^{+} ; m, n, k \in \mathbb{N} \backslash\{0\}$ where $m, n \geq 2$ or $a, b \in \mathbb{R}^{+} ; r, s \in \mathbb{Q}$
$a^{r} \cdot a^{s}=a^{r+s}$
$\frac{a^{r}}{a^{s}}=a^{r-s}$
$\left(a^{r}\right)^{s}=a^{r \cdot s}$
$(a \cdot b)^{r}=a^{r} \cdot b^{r}$
$\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$

$$
\begin{aligned}
& \sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \\
& \sqrt[n]{a^{k}}=(\sqrt[n]{a})^{k} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0) \\
& \sqrt[n]{\sqrt[m]{a}}=\sqrt[n \cdot m]{a}
\end{aligned}
$$

Binomial formulae

$a, b \in \mathbb{R} ; n \in \mathbb{N}$

$(a+b)^{2}=a^{2}+2 \cdot a \cdot b+b^{2}$

$$
\begin{aligned}
& (a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot a^{n-k} \cdot b^{k} \\
& (a-b)^{n}=\sum_{k=0}^{n}(-1)^{k} \cdot\binom{n}{k} \cdot a^{n-k} \cdot b^{k}
\end{aligned}
$$

$(a+b) \cdot(a-b)=a^{2}-b^{2}$

4 Logarithms

$a, b, c \in \mathbb{R}^{+}$where $a \neq 1 ; x, r \in \mathbb{R}$

$x=\log _{a}(b) \Leftrightarrow a^{x}=b$
$\log _{a}(b \cdot c)=\log _{a}(b)+\log _{a}(c) \quad \log _{a}\left(\frac{b}{c}\right)=\log _{a}(b)-\log _{a}(c) \quad \log _{a}\left(b^{r}\right)=r \cdot \log _{a}(b)$
$\log _{a}\left(a^{x}\right)=x$
$\log _{a}(a)=1$
$\log _{a}(1)=0$
$\log _{a}\left(\frac{1}{a}\right)=-1$
natural logarithm (logarithm with base $e): \ln (b)=\log _{e}(b)$
common logarithm (logarithm with base 10): $\lg (b)=\log _{10}(b)$

5 Quadratic Equations

$p, q \in \mathbb{R} \quad a, b, c \in \mathbb{R}$ where $a \neq 0$
$x^{2}+p \cdot x+q=0$
$x_{1,2}=-\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}$

$$
\begin{aligned}
& a \cdot x^{2}+b \cdot x+c=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}
\end{aligned}
$$

Vieta's Theorem

x_{1} and x_{2} are the solutions to the equation $x^{2}+p \cdot x+q=0$ if and only if:
$x_{1}+x_{2}=-p$
$x_{1} \cdot x_{2}=q$
Linear factorisation:
$x^{2}+p \cdot x+q=\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)$

6 Two-Dimensional Shapes

A ... area
u ... perimeter

Triangle

$u=a+b+c$
General triangle
$A=\frac{a \cdot h_{a}}{2}=\frac{b \cdot h_{b}}{2}=\frac{c \cdot h_{c}}{2}$

Heron's Formula
$A=\sqrt{s \cdot(s-a) \cdot(s-b) \cdot(s-c)}$ where $s=\frac{a+b+c}{2}$

Right-angled triangle with hypotenuse c and sides a, b

Pythagorean theorem
$a^{2}+b^{2}=c^{2}$

Quadrilateral

Square

$$
\begin{aligned}
& A=a^{2} \\
& u=4 \cdot a
\end{aligned}
$$

Rectangle
$A=a \cdot b$
$u=2 \cdot a+2 \cdot b$

Rhombus
$A=a \cdot h_{a}=\frac{e \cdot f}{2}$
$u=4 \cdot a$

Parallelogram
$A=a \cdot h_{a}=b \cdot h_{b}$
$u=2 \cdot a+2 \cdot b$

Trapezium
$A=\frac{(a+c) \cdot h}{2}$
$u=a+b+c+d$

Kite
$A=\frac{e \cdot f}{2}$
$u=2 \cdot a+2 \cdot b$

Circle

Arc length and sector of a circle
$A=\pi \cdot r^{2}=\frac{\pi \cdot d^{2}}{4}$
$u=2 \cdot \pi \cdot r=\pi \cdot d$

$b=\pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$
$A=\pi \cdot r^{2} \cdot \frac{\alpha}{360^{\circ}}=\frac{b \cdot r}{2}$

7 Solids

V ... volume
M ... lateral surface area
O ... surface area
$u_{\mathrm{G}} \ldots$ perimeter of the base

G ... area of the base

Prism

$V=G \cdot h$
$M=u_{G} \cdot h$
$O=2 \cdot G+M$

Pyramid

$V=\frac{G \cdot h}{3}$
$O=G+M$

Cylinder

$$
\begin{aligned}
& V=G \cdot h \\
& M=u_{G} \cdot h \\
& O=2 \cdot G+M
\end{aligned}
$$

Cone

$V=\frac{G \cdot h}{3}$
$M=\pi \cdot r \cdot s$
$O=G+M$

Sphere

$V=\frac{4}{3} \cdot \pi \cdot r^{3}$
$O=4 \cdot \pi \cdot r^{2}$

8 Trigonometry

Converting between degrees and radians

Right-angled triangle trigonometry
Sine: $\quad \sin (\alpha)=\frac{\text { side opposite to } \alpha}{\text { hypotenuse }}$
Cosine: $\quad \cos (\alpha)=\frac{\text { side adjacent to } \alpha}{\text { hypotenuse }}$
Tangent: $\tan (\alpha)=\frac{\text { side opposite to } \alpha}{\text { side adjacent to } \alpha}$

Unit circle trigonometry
$\sin ^{2}(\alpha)+\cos ^{2}(\alpha)=1$
$\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}$ for $\cos (\alpha) \neq 0$

9 Vectors

$P, Q \ldots$ points

Vectors in \mathbb{R}^{2}

Arrow from P to Q :
$P=\left(p_{1} \mid p_{2}\right), Q=\left(q_{1} \mid q_{2}\right)$
$\overrightarrow{P Q}=\binom{q_{1}-p_{1}}{q_{2}-p_{2}}$

Calculation rules in \mathbb{R}^{2}
$\vec{a}=\binom{a_{1}}{a_{2}}, \vec{b}=\binom{b_{1}}{b_{2}}, \vec{a} \pm \vec{b}=\binom{a_{1} \pm b_{1}}{a_{2} \pm b_{2}}$
$k \cdot \vec{a}=k \cdot\binom{a_{1}}{a_{2}}=\binom{k \cdot a_{1}}{k \cdot a_{2}}$ where $k \in \mathbb{R}$

Scalar product in \mathbb{R}^{2}
$\vec{a} \cdot \vec{b}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}$
Absolute value (length) of a vector in \mathbb{R}^{2}
$|\vec{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$
Vector perpendicular to $\vec{a}=\binom{a_{1}}{a_{2}}$ in \mathbb{R}^{2}
$\vec{n}=k \cdot\binom{-a_{2}}{a_{1}}$ where $k \in \mathbb{R} \backslash\{0\}$ and $|\vec{a}| \neq 0$
Criterion for two vectors to be perpendicular in \mathbb{R}^{2} and \mathbb{R}^{3}
$\vec{a} \cdot \vec{b}=0 \Leftrightarrow \vec{a} \perp \vec{b}$ where $|\vec{a}| \neq 0 ;|\vec{b}| \neq 0$

Vectors in \mathbb{R}^{n}
Arrow from P to Q :
$P=\left(p_{1}\left|p_{2}\right| \ldots \mid p_{n}\right), Q=\left(q_{1}\left|q_{2}\right| \ldots \mid q_{n}\right)$
$\overrightarrow{P Q}=\left(\begin{array}{c}q_{1}-p_{1} \\ a_{2}-p_{2} \\ \vdots \\ q_{n}-p_{n}\end{array}\right)$
Calculation rules in \mathbb{R}^{n}
$\vec{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right), \vec{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right), \vec{a} \pm \vec{b}=\left(\begin{array}{c}a_{1} \pm b_{1} \\ a_{2} \pm b_{2} \\ \vdots \\ a_{n} \pm b_{n}\end{array}\right)$
$k \cdot \vec{a}=k \cdot\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right)=\left(\begin{array}{c}k \cdot a_{1} \\ k \cdot a_{2} \\ \vdots \\ k \cdot a_{n}\end{array}\right)$ where $k \in \mathbb{R}$
Scalar product in \mathbb{R}^{n}
$\vec{a} \cdot \vec{b}=a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+\ldots+a_{n} \cdot b_{n}$
Absolute value (length) of a vector in \mathbb{R}^{n}
$|\vec{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots+a_{n}{ }^{2}}$
Angle φ between \vec{a} and \vec{b} in \mathbb{R}^{2} and \mathbb{R}^{3}
$\cos (\varphi)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}$ where $|\vec{a}| \neq 0 ;|\vec{b}| \neq 0$
Criterion for two vectors to be parallel in \mathbb{R}^{2} and \mathbb{R}^{3}
$\vec{a} \| \vec{b} \Leftrightarrow \vec{a}=k \cdot \vec{b}$ where $k \in \mathbb{R} \backslash\{0\}$ and $|\vec{a}| \neq 0 ;|\vec{b}| \neq 0$

10 Straight Lines

g ... line
$\vec{g} \ldots$ a direction vector for the line g
$\vec{n} \ldots$ a vector perpendicular to the line g
$X, P \ldots$ points on the line g
$m \ldots$ gradient of the line g
$\alpha \ldots$ angle of slope of the line g
$a, b, c, k \in \mathbb{R}$

Vector equation of a line g in \mathbb{R}^{2} and \mathbb{R}^{3}
$g: X=P+t \cdot \vec{g}$ where $t \in \mathbb{R}$
Equation of a line g in \mathbb{R}^{2}
$\left.\begin{array}{lll}\text { the explicit equation of a line: } & g: y=m \cdot x+c \\ \text { a general equation of a line: } & g: a \cdot x+b \cdot y=c \\ \text { a normal vector representation: } & g: \vec{n} \cdot x=\vec{n} \cdot P\end{array}\right\}$ where $m=\tan (\alpha)$

11 Rates of Change

For a real function f defined over an interval $[a, b]$:
Absolute change of f in $[a, b]$
$f(b)-f(a)$
Relative (percentage) change of f in $[a, b]$
$\frac{f(b)-f(a)}{f(a)}$ where $f(a) \neq 0$
Difference quotient (average rate of change) of f in $[a, b]$ or $[x, x+\Delta x]$
$\frac{f(b)-f(a)}{b-a}$ or $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ where $b \neq a$ and $\Delta x \neq 0$
Differential quotient (instantaneous rate of change) of f at the point x
$f^{\prime}(x)=\lim _{x_{1} \rightarrow x} \frac{f\left(x_{1}\right)-f(x)}{x_{1}-x}$ or $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

12 Differentiation and Integration

$f, g, h \ldots$ functions that are differentiable over \mathbb{R} or over a defined interval
$f^{\prime} \ldots$ first derivative of f
$F \ldots$ antiderivative of f
$g^{\prime} \ldots$ first derivative of g
$h^{\prime} \ldots$ first derivative of h
G ... antiderivative of g
$H \ldots$... antiderivative of h
$C, k, q \in \mathbb{R} ; a \in \mathbb{R}^{+} \backslash\{1\}$

Indefinite integral

$\int f(x) \mathrm{d} x=F(x)+C$ where $F^{\prime}=f$

Function

$f(x)=k$
$f^{\prime}(x)=0$
$f(x)=x^{q}$

$$
f^{\prime}(x)=q \cdot x^{q-1}
$$

Definite integral

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

$F(x)=\ln (|x|)$ where $q=-1$
$f(x)=e^{x} \quad f^{\prime}(x)=e^{x} \quad F(x)=e^{x}$
$f(x)=a^{x} \quad f^{\prime}(x)=\ln (a) \cdot a^{x} \quad F(x)=\frac{a^{x}}{\ln (a)}$

$f(x)=\sin (x)$	$f^{\prime}(x)=\cos (x)$	$F(x)=-\cos (x)$
$f(x)=\cos (x)$	$f^{\prime}(x)=-\sin (x)$	$F(x)=\sin (x)$
$g(x)=k \cdot f(x)$	$g^{\prime}(x)=k \cdot f^{\prime}(x)$	$G(x)=k \cdot F(x)$

$h(x)=f(x) \pm g(x)$	$h^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)$	$H(x)=F(x) \pm G(x)$
$g(x)=f(k \cdot x)$	$g^{\prime}(x)=k \cdot f^{\prime}(k \cdot x)$	$G(x)=\frac{1}{k} \cdot F(k \cdot x)$

13 Statistics

$x_{1}, x_{2}, \ldots, x_{n} \ldots$ a list of n real numbers
$x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)} \ldots$ ordered list of n values

Arithmetic mean

$\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$

Median

$$
\tilde{x}= \begin{cases}x_{\left(\frac{n+1}{2}\right)} & \ldots \text { when } n \text { is odd } \\ \frac{1}{2} \cdot\left(x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}\right) & \ldots \text { when } n \text { is even }\end{cases}
$$

Measures of spread

$s^{2} \ldots$ (empirical) variance of a sample
s ... (empirical) standard deviation of a sample
$s^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
s=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

If the variance of a population should be estimated using a sample of size n :
$S_{n-1}^{2}=\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
$s_{n-1}=\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$

14 Probability

$n \in \mathbb{N} \backslash\{0\} ; k \in \mathbb{N}$ where $k \leq n$
$A, B \ldots$ events
$\neg A$ or $\bar{A} \ldots$ complementary event of A
$A \wedge B$ or $A \cap B \ldots A$ and B (the event A and the event B both occur)
$A \vee B$ or $A \cup B \ldots A$ or B (at least one of the two events A or B occurs)
$P(A)$... probability of event A occurring
$P(A \mid B)$... probability of event A occurring given that B has occurred (conditional probability)
Factorial
$n!=n \cdot(n-1) \cdot \ldots \cdot 1 \quad 0!=1 \quad 1!=1$

Binomial coefficient
$\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}$

Probability for a Laplace experiment
$P(A)=\frac{\text { number of successful outcomes for } A}{\text { number of possible outcomes }}$

Elementary rules

$P(\neg A)=1-P(A)$
$P(A \wedge B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$
$P(A \wedge B)=P(A) \cdot P(B) \ldots$ if A and B are (stochastically) independent of one another
$P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
$P(A \vee B)=P(A)+P(B) \ldots$ if A and B are mutually exclusive
Expectation value μ of a discrete random variable X with values $x_{1}, x_{2}, \ldots, x_{n}$ $\mu=E(X)=x_{1} \cdot P\left(X=x_{1}\right)+x_{2} \cdot P\left(X=x_{2}\right)+\ldots+x_{n} \cdot P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} \cdot P\left(X=x_{i}\right)$

Variance σ^{2} of a discrete random variable X with values $x_{1}, x_{2}, \ldots, x_{n}$ $\sigma^{2}=V(X)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)$

Standard deviation σ

$\sigma=\sqrt{V(X)}$

Binomial distribution

$n \in \mathbb{N} \backslash\{0\} ; k \in \mathbb{N} ; p \in \mathbb{R}$ where $k \leq n$ and $0 \leq p \leq 1$

The random variable X is binomially distributed with parameters n and p
$P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}$
$E(X)=\mu=n \cdot p$
$V(X)=\sigma^{2}=n \cdot p \cdot(1-p)$

Normal distribution

$\mu, \sigma \in \mathbb{R}$ where $\sigma>0$
$f \ldots$ probability density function
φ... probability density function of the standard normal distribution
$\phi \ldots$ cumulative density function of the standard normal distribution

Normal distribution $N\left(\mu ; \sigma^{2}\right)$: The random variable X is normally distributed with expectation value (μ), standard deviation (σ) and variance $\left(\sigma^{2}\right)$
$P\left(X \leq x_{1}\right)=\int_{-\infty}^{x_{1}} f(x) \mathrm{d} x=\int_{-\infty}^{x_{1}} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot\left(\frac{x-\mu)^{2}}{\sigma}\right.} \mathrm{d} x$
Probabilities for standard deviation bands
$P(\mu-\sigma \leq X \leq \mu+\sigma) \approx 0.683$
$P(\mu-2 \cdot \sigma \leq X \leq \mu+2 \cdot \sigma) \approx 0.954$
$P(\mu-3 \cdot \sigma \leq X \leq \mu+3 \cdot \sigma) \approx 0.997$

Standard normal distribution $N(0,1)$
$z=\frac{x-\mu}{\sigma}$
$\phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \varphi(x) \mathrm{d} x=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} \mathrm{~d} x$
$\phi(-z)=1-\phi(z)$
$P(-z \leq Z \leq z)=2 \cdot \phi(z)-1$

$P(-z \leq Z \leq z)$	$=90 \%$	$=95 \%$	$=99 \%$
z	≈ 1.645	≈ 1.960	≈ 2.576

Confidence interval

$h . .$. relative frequency in a sample
p ... unknown relative proportion of the population
Y ... confidence level
γ-confidence interval for p (the values of p for which the value h is contained in the given range with probability γ):
$\left[h-z \cdot \sqrt{\frac{h \cdot(1-h)}{n}} ; h+z \cdot \sqrt{\frac{h \cdot(1-h)}{n}}\right]$, where for $z: y=2 \cdot \phi(z)-1$

15 Units of Measurement

Quantity Temperature	Unit degrees Celsius or kelvin	Symbol ${ }^{\circ} \mathrm{C}$ K	Relationship $\Delta t=\Delta T$
Frequency	hertz	Hz	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
Energy, work done, amount of heat	joules	J	$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}$
Force	newtons	N	$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}$
Torque	newton metres	$N \cdot m$	$1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}$
Electric resistance	ohms	Ω	$\begin{aligned} 1 \Omega & =1 \mathrm{~V} \cdot \mathrm{~A}^{-1} \\ & =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~A}^{-2} \cdot \mathrm{~s}^{-3} \end{aligned}$
Pressure	pascals	Pa	$\begin{aligned} 1 \mathrm{~Pa} & =1 \mathrm{~N} \cdot \mathrm{~m}^{-2} \\ & =1 \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2} \end{aligned}$
Electric current	amperes	A	$1 \mathrm{~A}=1 \mathrm{C} \cdot \mathrm{s}^{-1}$
Potential difference	volts	V	$\begin{aligned} 1 \mathrm{~V} & =1 \cdot \mathrm{~J} \cdot \mathrm{C}^{-1} \\ & =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~A}^{-1} \cdot \mathrm{~S}^{-3} \end{aligned}$
Power	watts	W	$\begin{aligned} 1 \mathrm{~W} & =1 \mathrm{~J} \cdot \mathrm{~s}^{-1} \\ & =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3} \end{aligned}$

16 Technical and Scientific Basics

Density	$\varrho=\frac{m}{V}$	
Power	$P=\frac{\Delta E}{\Delta t}=\frac{\Delta W}{\Delta t}$	$P=\frac{\mathrm{d} W}{\mathrm{~d} t}$
Force	$F=m \cdot a$	
Work done	$W=F \cdot s$	
Kinetic energy	$W=\int F(s) \mathrm{ds}$	$F=\frac{\mathrm{d} W}{\mathrm{~d} s}$
Potential energy	$E_{\text {kin }}=\frac{1}{2} \cdot m \cdot v^{2}$	
Uniform linear motion	$v=m \cdot g \cdot h$	
Uniform acceleration	$v=a \cdot t+v_{0}$	$a=\frac{d v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$

17 Financial Mathematics

Compound interest calculation
$K_{0} \ldots$ initial investment
$K_{n} \ldots$ final capital
p ... annual percentage rate of interest
$K_{n}=K_{0} \cdot(1+i)^{n}$ where $i=\frac{p}{100}$

18 Cost-of-Production and Theory of Value

$x \ldots$ amount produced, offered, required or sold $(x \geq 0)$

Variable costs	$K_{v}(x)$
Fixed costs	K_{f}
(Total) costs	$K(x)=K_{v}(x)+K_{f}$
Marginal costs	$K^{\prime}(x)$
Demand price	$p(x)$
Revenue/income	$E(x)=p(x) \cdot x$
Marginal revenue	$E^{\prime}(x)$
Profit	$G(x)=E(x)-K(x)$
Marginal profit	$G^{\prime}(x)$
Break-even point	$E(x)=K(x) \ldots$ at the (first) zero of the profit function

A

absolute change 8
absolute value of a vector 7
adjacent side 6
amperes 12
angle 6
angle between vectors 7
angle of slope of a line 8
annual percentage rate of
interest 13
antiderivative 9
arc length 5
area 5
area of the base 6
arithmetic mean 9
average rate of change 8

B

binomial coefficient 10
binomial distribution 10
binomial formulae 4
break-even point 13

C

calculation rules 4
Celsius 12
centi- 3
circle 5
common logarithm 4
complementary event 10
complex numbers 3
compound interest 13
conditional probability 10
cone 6
confidence interval 11
confidence level 11
cosine 6
cost-of-production and theory of value 13
costs 13
current 12
cylinder 6

D

deca- 3
deci- 3
definite integral 9
degrees (unit of measurement
for angles) 6
degrees Celsius 12
demand price 13
density 13
density function 11
derivative 9
difference 3
difference quotient 8
differential quotient 8
differentiation 9
direction vector 8
discrete random variable 10
distribution function 11

E

electric current 12
electric resistance 12
element 3
empirical standard deviation 9
empirical variance 9
empty set 3
energy 12, 13
equation of a line 8
events 10
expectation value 10
exponent 3

F

factorial 10
final capital 13
financial mathematics 13
fixed costs 13
force 12, 13
frequency 12

G

general triangle 5
giga- 3
gradient 8

H

heat 12
hecto- 3
Heron's formula 5
hertz 12
hypotenuse 5

I

income 13
indefinite integral 9
initial investment 13
instantaneous rate of change 8
integers 3
integral 9
intersection (of sets) 3

J

joules 12

K

kelvin 12
kilo- 3
kinetic energy 13
kite 5

L

Laplace experiment 10
lateral surface area 6
length of a vector 7
linear factorisation 4
logarithms 4

M

marginal costs 13
marginal profit 13
marginal revenue 13
mean 9
measures of spread 9
median 9
mega- 3
micro- 3
milli- 3

N

nano- 3
natural logarithm 4
natural numbers 3
newton metres 12
newtons 12
normal distribution 8
normal vector representation of a line 8

0

ohms 12
opposite side 6

P

parallel vectors 7
parallelogram 5
pascals 12
percentage change 8
perimeter 5, 6
perpendicular vectors 7,8
physical quantities 13
pico- 3
potential difference 12
potential energy 13
power 12, 13
powers 3
prefixes 3
pressure 12
prism 6
probability 10
probability density function 11
profit 13
proper subset 3
pyramid 6
Pythagorean theorem 5

Q

quadratic equations 4
quadrilateral 5

R

radians 6
random variable 10
rates of change 8
rational numbers 3
real numbers 3
rectangle 5
relative change 8
relative frequency 11
resistance 12
revenue 13
rhombus 5
right-angled triangle 5,6
roots 3

S

sample 9
scalar product 7
sector of a circle 5
sets 3
sets of numbers 3
side of a triangle 5
sine 6
solids 6
sphere 6
square 5
standard deviation 9, 10
standard deviation bands 11
standard normal distribution 11
statistics 9
straight lines 8
subset 3
surface area 6

T

tangent 6
temperature 12
tera- 3
torque 12
total costs 13
trapezium 5
triangle 5
trigonometry 6,7
two-dimensional shapes 5

U

uniform acceleration 13
uniform linear motion 13
union (of sets) 3
unit circle 7
units 12
units of measurement

V

variable costs 13
variance 9,10
vector equation of a line 8
vectors 7
Vieta's theorem 4
volts 12
volume 6

w

watts 12
work done 12, 13

