Formula Booklet

for the Standardised Competence-Oriented Written School-Leaving Examination (SRP)

Mathematics (AHS)

Bundesministerium Bildung, Wissenschaft und Forschung As of 28th February 2021 (no amendments to content since the version from 23rd September 2019)

Table of Contents

Chapter		Page
1 S	ets	3
2 P	refixes	3
3 P	owers	3
4 Lo	ogarithms	4
5 Q	Quadratic Equations	4
6 Tv	wo-Dimensional Shapes	5
7 S	olids	6
8 Tr	rigonometry	6
9 Ve	ectors	7
10 S [.]	traight Lines	8
11 R	ates of Change	8
12 D	ifferentiation and Integration	9
13 S	tatistics	9
14 P	robability	10
15 U	Inits of Measurement	12
16 Te	echnical and Scientific Basics	13
17 Fi	inancial Mathematics	13
18 C	Cost-of-Production and Theory of Value	13
In	ndex	14

1 Sets

\in	is an element of
¢	is not an element of
\cap	intersection
U	union
С	proper subset
\subseteq	subset
\	difference ("without")
{ }	empty set

Sets of numbers

$\mathbb{N} = \{0, 1, 2,\}$	natural numbers
Z	integers
Q	rational numbers
R	real numbers
С	complex numbers
\mathbb{R}^+	positive real numbers
\mathbb{R}_0^+	positive real numbers including zero

2 Prefixes

tera-	Т	1012	deci-	d	10-1
giga-	G	10 ⁹	centi-	С	10-2
mega-	Μ	10 ⁶	milli-	m	10-3
kilo-	k	10 ³	micro-	μ	10-6
hecto-	h	10 ²	nano-	n	10-9
deca-	da	10 ¹	pico-	р	10 ⁻¹²

3 Powers

Powers with integer exponents

$a \in \mathbb{R}; n \in \mathbb{N} \setminus \{0\}$		$a \in \mathbb{R} \setminus \{0\};$	$n \in \mathbb{N} \setminus \{0\}$	
$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{}$	$a^1 = a$	$a^{0} = 1$	$a^{-1} = \frac{1}{a}$	$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$
n factors				

Powers with rational exponents (roots)

 $a, b \in \mathbb{R}_0^+; n, k \in \mathbb{N} \setminus \{0\}$ where $n \ge 2$

$$a = \sqrt[n]{b} \iff a^n = b$$
 $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{k}{n}} = \sqrt[n]{a^k}$ $a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}}$ where $a > 0$

Calculation rules

 $a, b \in \mathbb{R} \setminus \{0\}; r, s \in \mathbb{Z}$ or $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$ $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$

$$a^{r} \cdot a^{s} = a^{r+s}$$

$$\frac{a^{r}}{a^{s}} = a^{r-s}$$

$$(a^{r})^{s} = a^{r} \cdot s$$

$$(a \cdot b)^{r} = a^{r} \cdot b^{r}$$

$$\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}}$$

$$n\sqrt{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad (b \neq 0)$$

$$\sqrt[n]{\sqrt[n]{a}} = \frac{n \cdot \sqrt[n]{a}}{\sqrt[n]{a}}$$

Binomial formulae

$a, b \in \mathbb{R}; n \in \mathbb{N}$	
$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$
$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$	$(a-b)^n = \sum_{k=0}^n (-1)^k \cdot \binom{n}{k} \cdot a^{n-k} \cdot b^k$
$(a+b)\cdot(a-b)=a^2-b^2$	

4 Logarithms

$a, b, c \in \mathbb{R}^+$ where $a \neq 1; x$,	$r \in \mathbb{R}$			
$x = \log_a(b) \iff a^x = b$				
$\log_a(b \cdot c) = \log_a(b) + \log_a(c)$	$\log_a\left(\frac{b}{c}\right) = \log_a(b) -$	- log _a (c)	$\log_a(b^r) = r \cdot$	$\log_a(b)$
$\log_a(a^x) = x$	$\log_a(a) = 1$	$\log_{a}(1) = 0$		$\log_a\left(\frac{1}{a}\right) = -1$

natural logarithm (logarithm with base *e*): $\ln(b) = \log_e(b)$ common logarithm (logarithm with base 10): $\lg(b) = \log_{10}(b)$

5 Quadratic Equations

$$p, q \in \mathbb{R}$$
 $a, b, c \in \mathbb{R}$ where $a \neq 0$ $x^2 + p \cdot x + q = 0$ $a \cdot x^2 + b \cdot x + c = 0$ $x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$ $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Vieta's Theorem

 x_1 and x_2 are the solutions to the equation $x^2 + p \cdot x + q = 0$ if and only if: $x_1 + x_2 = -p$ $x_1 \cdot x_2 = q$

Linear factorisation: $x^2 + p \cdot x + q = (x - x_1) \cdot (x - x_2)$

6 Two-Dimensional Shapes

A ... area

u ... perimeter

Triangle

u = a + b + c

General triangle

Right-angled triangle with hypotenuse *c* and sides *a*, *b*

Pythagorean theorem $a^2 + b^2 = c^2$

Quadrilateral

а Square Rectangle $A = a^2$ $A = a \cdot b$ b а $u = 2 \cdot a + 2 \cdot b$ $u = 4 \cdot a$ а а Rhombus Parallelogram а $A = a \cdot h_a = \frac{e \cdot f}{2}$ $A = a \cdot h_a = b \cdot h_b$ $u = 2 \cdot a + 2 \cdot b$ $u = 4 \cdot a$ а С Trapezium Kite $A = \frac{e \cdot f}{2}$ $A = \frac{(a+c) \cdot h}{2}$ $u = 2 \cdot a + 2 \cdot b$ u = a + b + c + dа Circle

Arc length and sector of a circle

7 Solids

- V... volume
- O ... surface area

G ... area of the base

Prism

$$V = G \cdot h$$
$$M = u_{G} \cdot h$$
$$O = 2 \cdot G + M$$

Pyramid

$$V = \frac{G \cdot h}{3}$$
$$O = G + M$$

Sphere

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$
$$O = 4 \cdot \pi \cdot r^2$$

8 Trigonometry

Converting between degrees and radians

.....

Right-angled triangle trigonometry

Sine:	$sin(\alpha)$	=	side opposite to α	
0			hypotenuse	
Cosine:	$\cos(\alpha)$	=	side adjacent to α	
Tananati	top(a)		side opposite to α	
langent:	$tan(\alpha)$	=	side adjacent to α	

hypotenuse

Cylinder

M ... lateral surface area

 $u_{\rm G}$... perimeter of the base

$V = G \cdot h$
$M = u_{\rm G} \cdot h$
$O = 2 \cdot G + M$

Cone

$V = \frac{G \cdot h}{3}$
$M = \pi \cdot r \cdot s$
O = G + M

Unit circle trigonometry

 $sin^{2}(\alpha) + cos^{2}(\alpha) = 1$ $tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} \text{ for } cos(\alpha) \neq 0$

9 Vectors

P, Q ... points

Vectors in \mathbb{R}^2

Arrow from P to Q: $P = (p_1 | p_2), Q = (q_1 | q_2)$

 $\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$

Calculation rules in \mathbb{R}^2

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \end{pmatrix}$$

$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix}$$
 where $k \in \mathbb{R}$

Scalar product in \mathbb{R}^2

 $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$

Absolute value (length) of a vector in \mathbb{R}^2

 $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

Vector perpendicular to $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in \mathbb{R}^2

$$\vec{n} = k \cdot \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$$
 where $k \in \mathbb{R} \setminus \{0\}$ and $|\vec{a}| \neq 0$

Criterion for two vectors to be perpendicular in \mathbb{R}^2 and \mathbb{R}^3

$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$$
 where $|\vec{a}| \neq 0$; $|\vec{b}| \neq 0$

Vectors in \mathbb{R}^n

Arrow from P to Q:

$$P = (p_1 | p_2 | \dots | p_n), Q = (q_1 | q_2 | \dots | q_n)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ \vdots \\ q_n - p_n \end{pmatrix}$$

Calculation rules in \mathbb{R}^n

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$
$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \\ \vdots \\ k \cdot a_n \end{pmatrix} \text{ where } k \in \mathbb{R}$$

Scalar product in \mathbb{R}^n

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

Absolute value (length) of a vector in \mathbb{R}^n

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Angle φ between \vec{a} and \vec{b} in \mathbb{R}^2 and \mathbb{R}^3

$$\cos(\varphi) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} \text{ where } |\overrightarrow{a}| \neq 0; |\overrightarrow{b}| \neq 0$$

Criterion for two vectors to be parallel in \mathbb{R}^2 and \mathbb{R}^3

$$\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b}$$
 where $k \in \mathbb{R} \setminus \{0\}$
and $|\vec{a}| \neq 0; |\vec{b}| \neq 0$

10 Straight Lines

<i>g</i> line	\overrightarrow{g} a direction vector for the line g \overrightarrow{n} a vector perpendicular to the line g
	X, P points on the line g
	m gradient of the line g
	lpha angle of slope of the line g
	$a, b, c, k \in \mathbb{R}$

Vector equation of a line g in \mathbb{R}^2 and \mathbb{R}^3

 $g: X = P + t \cdot \overrightarrow{g}$ where $t \in \mathbb{R}$

Equation of a line g in \mathbb{R}^2

the explicit equation of a line:	$g: y = m \cdot x + c$	where $m = \tan(\alpha)$
a general equation of a line:	$g: a \cdot x + b \cdot y = c$	where $\vec{n} \parallel \begin{pmatrix} a \\ c \end{pmatrix}$ and $\begin{pmatrix} a \\ c \end{pmatrix} \neq \begin{pmatrix} 0 \\ c \end{pmatrix}$
a normal vector representation:	$g: \vec{n} \cdot X = \vec{n} \cdot P \qquad \int$	(0) (0) (0) (0) (0) (0)

11 Rates of Change

For a real function f defined over an interval [a, b]:

Absolute change of f in [a, b]

f(b) - f(a)

Relative (percentage) change of f in [a, b]

 $\frac{f(b) - f(a)}{f(a)} \text{ where } f(a) \neq 0$

Difference quotient (average rate of change) of *f* in [*a*, *b*] or [*x*, *x* + Δx] $\frac{f(b) - f(a)}{b - a} \text{ or } \frac{f(x + \Delta x) - f(x)}{\Delta x} \text{ where } b \neq a \text{ and } \Delta x \neq 0$

Differential quotient (instantaneous rate of change) of f at the point x

 $f'(x) = \lim_{x_1 \to x} \frac{f(x_1) - f(x)}{x_1 - x} \text{ or } f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

12 Differentiation and Integration

f, g, h functions that are differentiable	e over ${\mathbb R}$ or over a defined interval	
f' first derivative of f	F antiderivative of f	
g' first derivative of g	G antiderivative of g	
$h' \dots$ first derivative of h	H antiderivative of h	
$C \ k \ a \in \mathbb{R} \cdot a \in \mathbb{R}^+ \setminus \{1\}$		

Indefinite integral

 $\int f(x) dx = F(x) + C \text{ where } F' = f$

Definite integral

 $\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$

Function	Derivative	Antiderivative
f(x) = k	f'(x) = 0	$F(x) = k \cdot x$
$f(x) = x^q$	$f'(x) = q \cdot x^{q-1}$	$F(x) = \frac{x^{q+1}}{q+1} \text{ where } q \neq -1$ $F(x) = \ln(x) \text{ where } q = -1$
$f(x) = e^x$	$f'(x) = e^x$	$F(x) = e^x$
$f(x) = a^x$	$f'(x) = \ln(a) \cdot a^x$	$F(x) = \frac{a^x}{\ln(a)}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	$F(x) = \sin(x)$
$g(x) = k \cdot f(x)$	$g'(x) = k \cdot f'(x)$	$G(x) = k \cdot F(x)$
$h(x) = f(x) \pm g(x)$	$h'(x) = f'(x) \pm g'(x)$	$H(x) = F(x) \pm G(x)$
$g(x) = f(k \cdot x)$	$g'(x) = k \cdot f'(k \cdot x)$	$G(x) = \frac{1}{k} \cdot F(k \cdot x)$

13 Statistics

 $x_1, x_2, \dots, x_n \dots$ a list of *n* real numbers $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)} \dots$ ordered list of *n* values

Arithmetic mean

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^n X_i$$

Measures of spread

- s^2 ... (empirical) variance of a sample
- s ... (empirical) standard deviation of a sample

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad S = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

If the variance of a population should be estimated using a sample of size *n*:

$$S_{n-1}^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad \qquad S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Median

Ñ

$$= \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \dots \text{ when } n \text{ is odd} \\ \frac{1}{2} \cdot \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right) \dots \text{ when } n \text{ is even} \end{cases}$$

14 Probability

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}$ where $k \leq n$

A, B ... events

 $\neg A$ or \overline{A} ... complementary event of A

 $A \wedge B$ or $A \cap B \dots A$ and B (the event A and the event B both occur)

 $A \lor B$ or $A \cup B \dots A$ or B (at least one of the two events A or B occurs)

P(A) ... probability of event A occurring

P(A|B) ... probability of event A occurring given that B has occurred (conditional probability)

Factorial

 $n! = n \cdot (n - 1) \cdot \dots \cdot 1$ 0! = 1 1! = 1

Binomial coefficient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Probability for a Laplace experiment

 $P(A) = \frac{\text{number of successful outcomes for } A}{\text{number of possible outcomes}}$

Elementary rules

$$\begin{split} P(\neg A) &= 1 - P(A) \\ P(A \land B) &= P(A) \cdot P(B | A) = P(B) \cdot P(A | B) \\ P(A \land B) &= P(A) \cdot P(B) \dots \text{ if } A \text{ and } B \text{ are (stochastically) independent of one another} \\ P(A \lor B) &= P(A) + P(B) - P(A \land B) \\ P(A \lor B) &= P(A) + P(B) \dots \text{ if } A \text{ and } B \text{ are mutually exclusive} \end{split}$$

Expectation value μ of a discrete random variable X with values x_1, x_2, \dots, x_n

 $\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots + x_n \cdot P(X = x_n) = \sum_{i=1}^n x_i \cdot P(X = x_i)$

Variance σ^2 of a discrete random variable X with values x_1, x_2, \dots, x_n

 $\sigma^{2} = V(X) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot P(X = x_{i})$

Standard deviation σ

 $\sigma = \sqrt{V(X)}$

Binomial distribution

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}; p \in \mathbb{R}$ where $k \le n$ and $0 \le p \le 1$

The random variable X is binomially distributed with parameters n and p

$$P(X = k) = \binom{n}{k} \cdot p^{k} \cdot (1 - p)^{n-k}$$
$$E(X) = \mu = n \cdot p$$
$$V(X) = \sigma^{2} = n \cdot p \cdot (1 - p)$$

Normal distribution

 $\mu, \sigma \in \mathbb{R}$ where $\sigma > 0$

f ... probability density function

 $\boldsymbol{\varphi} \ldots$ probability density function of the standard normal distribution

 $\phi \ldots$ cumulative density function of the standard normal distribution

Normal distribution $N(\mu; \sigma^2)$: The random variable X is normally distributed with expectation value (μ), standard deviation (σ) and variance (σ^2)

$$P(X \le x_1) = \int_{-\infty}^{x_1} f(x) \, \mathrm{d}x = \int_{-\infty}^{x_1} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma}} \, \mathrm{d}x$$

Probabilities for standard deviation bands $P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.683$ $P(\mu - 2 \cdot \sigma \le X \le \mu + 2 \cdot \sigma) \approx 0.954$ $P(\mu - 3 \cdot \sigma \le X \le \mu + 3 \cdot \sigma) \approx 0.997$

Standard normal distribution N(0, 1)

$$z = \frac{x - \mu}{\sigma}$$

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} \phi(x) dx = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} dx$$

$$\phi(-z) = 1 - \phi(z)$$

$$P(-z \le Z \le z) = 2 \cdot \phi(z) - 1$$

$$\frac{P(-z \le Z \le z)}{z} = \frac{90\%}{\approx 1.645} = \frac{95\%}{\approx 1.960} = \frac{99\%}{\approx 2.576}$$

Confidence interval

h ... relative frequency in a sample *p* ... unknown relative proportion of the population

 γ ... confidence level

 γ -confidence interval for *p* (the values of *p* for which the value *h* is contained in the given range with probability γ):

$$\left[h - z \cdot \sqrt{\frac{h \cdot (1 - h)}{n}}; h + z \cdot \sqrt{\frac{h \cdot (1 - h)}{n}}\right], \text{ where for } z: \gamma = 2 \cdot \phi(z) - 1$$

15 Units of Measurement

Quantity Temperature	Unit degrees Celsius or kelvin	Symbol ℃ K	Relationship $\Delta t = \Delta T$
Frequency	hertz	Hz	1 Hz = 1 s ⁻¹
Energy, work done, amount of heat	joules	J	$1 J = 1 kg \cdot m^2 \cdot s^{-2}$
Force	newtons	Ν	$1 \text{ N} = 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$
Torque	newton metres	N·m	$1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
Electric resistance	ohms	Ω	$1 \Omega = 1 V \cdot A^{-1}$ = 1 kg \cdot m^2 \cdot A^{-2} \cdot s^{-3}
Pressure	pascals	Pa	1 Pa = 1 N \cdot m ⁻² = 1 kg \cdot m ⁻¹ \cdot s ⁻²
Electric current	amperes	A	$1 \text{ A} = 1 \text{ C} \cdot \text{s}^{-1}$
Potential difference	volts	V	$1 V = 1 \cdot J \cdot C^{-1}$ = 1 kg \cdot m^2 \cdot A^{-1} \cdot s^{-3}
Power	watts	W	$1 W = 1 J \cdot s^{-1}$ $= 1 kg \cdot m^2 \cdot s^{-3}$

.....

16 Technical and Scientific Basics

Density	$\varrho = \frac{m}{V}$		
Power	$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$	$P = \frac{\mathrm{d}W}{\mathrm{d}t}$	
Force	$F = m \cdot a$		
Work done	$W = F \cdot s$		
	$W = \int F(s) ds$	$F = \frac{\mathrm{d}W}{\mathrm{d}s}$	
Kinetic energy	$E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$		
Potential energy	$E_{\rm pot} = m \cdot g \cdot h$		
Uniform linear motion	$V = \frac{S}{t}$	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$	v(t) = s'(t)
Uniform acceleration	$v = a \cdot t + v_0$	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 \mathrm{s}}{\mathrm{d}t^2}$	a(t) = v'(t) = s''(t)

17 Financial Mathematics

Compound interest calculation

 K_0 ... initial investment

 K_n ... final capital

p... annual percentage rate of interest

 $K_n = K_0 \cdot (1 + i)^n$ where $i = \frac{p}{100}$

18 Cost-of-Production and Theory of Value

x amount produced, offered, required or sold ($x \ge 0$)		
Variable costs	$\mathcal{K}_{v}(x)$	
Fixed costs	K _f	
(Total) costs	$\mathcal{K}(x) = \mathcal{K}_{v}(x) + \mathcal{K}_{f}$	
Marginal costs	K'(x)	
Demand price	p(x)	
Revenue/income	$E(x) = p(x) \cdot x$	
Marginal revenue	E'(x)	
Profit	G(x) = E(x) - K(x)	
Marginal profit	G'(x)	
Break-even point	$E(x) = K(x) \dots$ at the (first) zero of the profit function	

Index

Α

absolute change 8 absolute value of a vector 7 adjacent side 6 amperes 12 angle 6 angle between vectors 7 angle of slope of a line 8 annual percentage rate of interest 13 antiderivative 9 arc length 5 area 5 area of the base 6 arithmetic mean 9 average rate of change 8

В

binomial coefficient 10 binomial distribution 10 binomial formulae 4 break-even point 13

С

calculation rules 4 Celsius 12 centi- 3 circle 5 common logarithm 4 complementary event 10 complex numbers 3 compound interest 13 conditional probability 10 cone 6 confidence interval 11 confidence level 11 cosine 6 cost-of-production and theory of value 13 costs 13 current 12 cylinder 6

D

deca- 3
deci- 3
definite integral 9
degrees (unit of measurement for angles) 6
degrees Celsius 12
demand price 13
density 13
density function 11
derivative 9
difference 3
difference quotient 8 differential quotient 8 differentiation 9 direction vector 8 discrete random variable 10 distribution function 11

Е

electric current 12 electric resistance 12 element 3 empirical standard deviation 9 empty set 3 energy 12, 13 equation of a line 8 events 10 expectation value 10 exponent 3

F

factorial 10 final capital 13 financial mathematics 13 fixed costs 13 force 12, 13 frequency 12

G

general triangle 5 giga- 3 gradient 8

н

heat 12 hecto- 3 Heron's formula 5 hertz 12 hypotenuse 5

I

income 13 indefinite integral 9 initial investment 13 instantaneous rate of change 8 integers 3 integral 9 intersection (of sets) 3

J

joules 12

Κ

kelvin 12 kilo- 3 kinetic energy 13 kite 5

L

.....

Laplace experiment 10 lateral surface area 6 length of a vector 7 linear factorisation 4 logarithms 4

Μ

marginal costs 13 marginal profit 13 marginal revenue 13 mean 9 measures of spread 9 median 9 mega- 3 micro- 3 milli- 3

Ν

nano- 3 natural logarithm 4 natural numbers 3 newton metres 12 newtons 12 normal distribution 8 normal vector representation of a line 8

0

ohms 12 opposite side 6

Ρ

parallel vectors 7 parallelogram 5 pascals 12 percentage change 8 perimeter 5,6 perpendicular vectors 7,8 physical quantities 13 pico- 3 potential difference 12 potential energy 13 power 12, 13 powers 3 prefixes 3 pressure 12 prism 6 probability 10 probability density function 11 profit 13 proper subset 3 pvramid 6 Pythagorean theorem 5

Q

quadratic equations 4 quadrilateral 5

R

radians 6 random variable 10 rates of change 8 rational numbers 3 real numbers 3 rectangle 5 relative change 8 relative frequency 11 resistance 12 revenue 13 rhombus 5 right-angled triangle 5, 6 roots 3

S

sample 9 scalar product 7 sector of a circle 5 sets 3 sets of numbers 3 side of a triangle 5 sine 6 solids 6 sphere 6 square 5 standard deviation 9, 10 standard deviation bands 11 standard normal distribution 11 statistics 9 straight lines 8 subset 3 surface area 6

Т

tangent 6 temperature 12 tera- 3 torque 12 total costs 13 trapezium 5 triangle 5 trigonometry 6, 7 two-dimensional shapes 5

U

uniform acceleration 13 uniform linear motion 13 union (of sets) 3 unit circle 7 units 12 units of measurement 12

V

variable costs 13 variance 9, 10 vector equation of a line 8 vectors 7 Vieta's theorem 4 volts 12 volume 6

W

watts 12 work done 12, 13