Standardised Competence-Oriented
Written School-Leaving Examination

AHS
Main Examination Session 2021

Mathematics

- Bundesministerium

Bildung, Wissenschaft
und Forschung

Advice for Completing the Tasks

Dear candidate,

The following booklet contains Part 1 tasks and Part 2 tasks (divided into sub-tasks). The tasks can be completed independently of one another.
Please do all of your working out solely in this booklet and on the paper provided to you. Write your name and that of your class on the cover page of the booklet in the spaces provided. Please also write your name on any separate sheet of paper used and number these pages consecutively. When answering each sub-task, write the name/number of the sub-task (e.g. 25a1) on your sheet.
In the assessment of your work, everything that is not crossed out will be considered. Your solutions must be marked clearly. If a solution is not clearly marked or if more than one solution is given, the task will be considered to be unsolved.

The use of the official formula booklet for this examination that has been approved by the relevant government authority is permitted. Furthermore, the use of electronic device(s) (e.g. graphic display calculators or other appropriate technology) is allowed provided there is no possibility of communicating via the internet, Bluetooth, mobile networks etc. and there is no access to your own data stored on the device.

An explanation of the task types is available in the examination room and can be viewed on request.
Please hand in this booklet and all worksheets you have used at the end of the examination.

Changing an answer for a task that requires a cross:

1. Fill in the box that contains the cross.
2. Put a cross in the box next to your new answer.

In this instance, the answer " $5+5=9$ " was originally chosen. The answer was later changed to be " $2+2=4$ ".

$1+1=3$	\square
$2+2=4$	$\boxed{ }$
$3+3=5$	\square
$4+4=4$	\square
$5+5=9$	\square
$6+6=10$	\square

Selecting an item that has been filled in:

1. Fill in the box that contains the cross for the answer you do not wish to give.
2. Put a circle around the filled-in box you would like to select.

In this instance, the answer " $2+2=4$ " was filled in and then selected again.

$1+1=3$	\square
$2+2=4$	\square
$3+3=5$	\square
$4+4=4$	\square
$5+5=9$	\square
$6+6=10$	\square

Assessment

Each task in Part 1 and each sub-task in Part 2 will be awarded either 0 points or 1 point or 0, $1 / 2$ or 1 point respectively. The points that can be achieved in each (sub-)task are shown in the booklet.

Grading System

points awarded	grade
$32-36$ points	very good
$27-31.5$ points	good
$22-26.5$ points	satisfactory
$17-21.5$ points	pass
$0-16.5$ points	fail

Best-of Assessment: A best-of assessment approach will be applied to tasks 26, 27 and 28 . Of these three Part 2 tasks, the task with the lowest point score will not be included in the total point score.

Good luck!

Task 1

Rational Numbers

Statements about rational numbers are shown below.

Task:

Put a cross next to each of the two correct statements. [2 out of 5]

The statement $a+b \geq 0$ holds for all rational numbers a and b.	\square
For each rational number a, there exists a rational number b such that the statement $a+b=0$ holds.	\square
There are rational numbers a and b for which $a \cdot b<b$ holds.	\square
If exactly one of the two rational numbers a and $b, b \neq 0$, is positive, then the quotient $\frac{a}{b}$ is always positive.	\square
If at least one of the two rational numbers a and b is negative, then the product $a \cdot b$ is always negative.	\square

Task 2

Item of Clothing

The price of a particular item of clothing was $€ 49.90$ at the end of the year 2017. At this point in time, it was 17.8 \% more expensive than it had been at the beginning of the year 2017.

Task:

Determine the price increase in euros of the item of clothing over the course of the year 2017.

Task 3

School Sport Week

For a school sport week, a school books x rooms with four beds and y rooms with six beds at a youth hostel. All of the rooms that are booked will be fully occupied.
The booking can be described by the system of equations shown below.
I: $4 \cdot x+6 \cdot y=56$
II: $x+y=12$

Task:

Put a cross next to each of the two correct statements. [2 out of 5]

Exactly 4 rooms with four beds and exactly 6 rooms with six beds are booked.	\square
Fewer rooms with four beds are booked than rooms with six beds.	\square
Exactly 12 rooms are booked.	\square
Beds for exactly 56 people are booked.	\square
Exactly 10 rooms are booked.	\square

Task 4

Vector Equations of Lines

The diagram below shows the two lines g and h. Three points are shown on each of the lines:
$A, B, P \in g$ and $B, C, Q \in h$.
In addition to this, a direction vector for each of the lines is shown.

Task:

Put a cross next to each of the two statements for which $s, t \in \mathbb{R}$ with $s \neq 0$ and $t \neq 0$ can be chosen such that the corresponding statement is true. [2 out of 5]

$A=C+s \cdot \vec{v}+t \cdot \vec{w}$	\square
$B=C+s \cdot \vec{v}$	\square
$B=Q+t \cdot \vec{w}$	\square
$A=P+s \cdot \vec{v}+t \cdot \vec{w}$	\square
$C=P+t \cdot \vec{w}$	\square

Task 5

Square

A square has vertices A, B, C and D. The vertex $C=(5,-3)$ and the point of intersection of the diagonals $M=(3,1)$ are given. The vertices A, B, C and D of the square are labelled in an anti-clockwise direction.

Task:

Determine the coordinates of the vertices A and B.
$A=$ \qquad
$B=$ \qquad

Task 6

Ramp

A ramp with a (sloped) length of d metres has been designed to overcome a vertical rise of h metres $(d>0, h>0)$. The angle of elevation of the ramp is given by α.

Task:

Put a cross next to each of the two equations that correctly describe the situation. [2 out of 5]

$d=\frac{h}{\sin (\alpha)}$	\square
$d=h \cdot \cos (\alpha)$	\square
$d=\frac{h}{\cos \left(90^{\circ}-\alpha\right)}$	\square
$d=h \cdot \sin \left(90^{\circ}-\alpha\right)$	\square
$d=h \cdot \tan (\alpha)$	\square

Task 7

Ideal Gas

The equation $p \cdot V=n \cdot R \cdot T$ models the relationship between the pressure p, the volume V, the amount of substance n and the absolute temperature T of an ideal gas, whereby R is a constant $\left(V, n, R \in \mathbb{R}^{+}\right.$and $\left.p, T \in \mathbb{R}_{0}^{+}\right)$.

The function p models the pressure $p(T)$ in terms of the temperature T when the other quantities given in the equation remain constant.

Task:

In the coordinate system shown below, sketch the graph of one such function p.

Task 8

Types of Functions

Four types of functions as well as six tables of values of the functions f_{1} to f_{6}, which each correspond to a particular type of function, are shown below. The values of the function f_{1} are rounded to two decimal places.

Task:

Match each of the four types of function shown below to the corresponding table of values (from A to F).

linear function	
quadratic function	
exponential function	
sine function	

	x	$f_{1}(x)$
	-2	-0.91
A	-1	-0.84
	0	0
	1	0.84
	2	0.91
	x	$f_{2}(x)$
	-2	8
B	-1	2
	0	0
	1	2
	2	8
	x	$f_{3}(x)$
	-2	-7
C	-1	-1
	0	0
	1	1
	2	9
	x	$f_{4}(x)$
	-2	0.25
D	-1	0.5
	0	1
	1	2
	2	4
	x	$f_{5}(x)$
	-2	-3
E	-1	-1
	0	1
	1	3
	2	5
	x	$f_{6}(x)$
	-2	-0.5
	-1	-1
	0	$u n d e f i n e d$
1	1	
	2	0.5

Task 9

Direct Proportion

The graph of a linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=m \cdot x+c$ with $m, c \in \mathbb{R}$ goes through the points $A=\left(x_{A}, 6\right)$ and $B=(12,16)$.

Task:

Determine the coordinate X_{A} of the point A such that the function f describes a directly proportional relationship.
$x_{A}=$ \qquad

Task 10

Quadratic Functions

The diagram below shows the graphs of the two real functions f and g. The following statements hold:
$f(x)=a \cdot x^{2}+b$ with $a, b \in \mathbb{R}$
$g(x)=c \cdot x^{2}+d$ with $c, d \in \mathbb{R}$

The points shown in bold have integer coordinates.
Task:

Put a cross next to each of the two correct statements. [2 out of 5]

$d=f(0)$	\square
$b=d$	\square
$a=-c$	\square
$-f(x)=g(x)$ for all $x \in \mathbb{R}$	\square
$f(2)=g(2)$	\square

Task 11

Half-Lives of Decay Processes

The three exponential functions N_{1}, N_{2} and N_{3} each describe a decay process with the corresponding half-lives τ_{1}, τ_{2} and τ_{3}.
Sections of the graphs of these three functions are shown below.

Task:

Write down the half-lives τ_{1}, τ_{2} and τ_{3} in increasing order of magnitude. Start with the shortest half-life.
\qquad $<$ \qquad $<$ \qquad

Task 12

Equation of a Function

The following information is known about a real function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$:

- $f(1)=3$
- For all real numbers $x, f(x+1)$ is 50% greater than $f(x)$.

Task:

Write down the equation of one such function f.
$f(x)=$ \qquad

Task 13

Diet

Hannes went on a diet that lasted ten weeks. At the start of each week and at the end of the diet, he recorded his body mass (in kg). These values are shown in the diagram below.

Task:

Write down the absolute change (in kg) and the relative change (in \%) of Hannes's body mass from the beginning to the end of the diet.
absolute change: \qquad kg
relative change: \qquad \%

Task 14

Rates of Change of a Polynomial Function

The diagram below shows the graph of a polynomial function f and the point $A=\left(x_{1}, f\left(x_{1}\right)\right)$ on the graph of f.

For an x_{2} on the diagram above with $x_{2}>x_{1}$, the following conditions hold:

- The differential quotient of f at x_{2} is negative.
- The difference quotient of f in the interval $\left[x_{1}, x_{2}\right]$ is zero.

Task:

In the diagram above, label the point $P=\left(x_{2}, f\left(x_{2}\right)\right)$ for which both of the conditions given above are fulfilled.

Task 15

Carp

The number of carp in a pond should be restricted to 800 carp. For modelling purposes, it is assumed that the number of carp increases each year by 7% of the difference from the maximum number of 800 carp.

The number of carp after n years is given by $F(n)$ and $F(0)=500$ holds.

Task:

Put a cross next to the difference equation that correctly describes the development of the number of carp. [1 out of 6]

$F(n+1)=F(n)+0.07 \cdot(800-F(n))$	\square
$F(n)=F(n+1)+0.07 \cdot(800-F(n+1))$	\square
$F(n+1)=F(n)+1.07 \cdot(800-F(n))$	\square
$F(n+1)=F(n)+0.07 \cdot(F(n)-800)$	\square
$F(n+1)=800-0.07 \cdot F(n)$	\square
$F(n)=800-0.07 \cdot F(n+1)$	\square

Task 16

Definite Integral

The function F is an antiderivative of the polynomial function f.

Task:

Put a cross next to the expression that definitely corresponds to $\int_{2}^{5} f(x) \mathrm{dx}$. [1 out of 6]

$\frac{F(5)-F(2)}{5-2}$	\square
$\frac{F(5)-F(2)}{F(2)}$	\square
$F(5)-F(2)$	\square
$F(5)+F(2)$	\square
$\frac{F(2)+F(5)}{2}$	\square
$\frac{F(5)}{F(2)}$	\square

Task 17

Properties of a Function

The diagram below shows the graph of the first derivative f^{\prime} of a polynomial function f.

Task:

Put a cross next to each of the two statements that are definitely true about the function f.

In the interval $[-3,3]$ the function f is strictly monotonically increasing.	\square
The graph of f is symmetrical about the vertical axis in the interval $[-3,3]$.	\square
The function f has at least one point of inflexion in the interval $[-3,3]$.	\square
In the interval $[-3,3]$ all values of the function f are positive.	\square
The function f has at least one local maximum or minimum in the interval $[-3,3]$.	\square

Task 18

Water Inflow

A container is filled with water for 6 minutes.
The inflow rate gives the number of litres of water that flow into the container per minute.
The inflow rate $Z(t)$ decreases linearly in terms of the time t.
The diagram below shows the graph of the function $Z(t$ in minutes, $Z(t)$ in litres per minute). The points shown in bold have integer coordinates.

Task:

Determine the number of litres of water that flow into this container in these 6 minutes.
\qquad litres

Task 19

Entrance Exam

For a particular entrance exam, the maximum score is 10 points. The bar chart shown below gives the relative frequencies of the points scored as a percentage.

The points scored in the entrance exam are shown in the box plot below.

Task:

Determine a and b.
$a=$ \qquad
$b=$ \qquad

Task 20

Salaries

Seven people work at a small company. Their monthly salaries are given as follows:
€ 1500, € 2300, € 1500, € 1400, € 4500, € 2200 , € 1300.

One more person is to be employed, but the median salary value will not change.

Task:

Based on the information given above, write down the largest possible salary of this additional person.

Task 21

Tossing a Coin

After being tossed, a coin shows either "heads" or "tails". The probability of the coin showing "heads" is exactly the same as the probability of the coin showing "tails" for each toss. The results of the tosses are independent of each other.

In a random experiment, the coin is tossed 4 times.
Task:
Determine the probability of "heads" occurring more often than "tails" in this random experiment.

Task 22

Probabilities of a Random Variable

A particular random variable X can only take the value -4 , the value 0 or the value 2 .
For the probabilities, the following statements hold:
$P(X=-4)=0.3$
$P(X=0)=a$
$P(X=2)=b$
a and b are positive real numbers.
The expectation value of X is zero i.e. $E(X)=0$.
Task:
Write down the values of a and b.
$a=$ \qquad
$b=$ \qquad

Task 23

Smoking Behaviour

According to a study, 34% of all smokers want to quit smoking.

Task:

Interpret the expression shown below in the given context.
$\binom{200}{57} \cdot 0.34^{57} \cdot 0.66^{143}$

Task 24

Corked Wine

The flavour of wine can be impaired by a particular substance that can get into the wine from the cork. If this happens, the wine is said to be "corked".

In a winery, all wine bottles from a particular vintage are sealed with corks from the same production batch. During a later check of 200 wine bottles from this vintage, it is found that the wine in 12 of these bottles is corked.

The relative proportion of corked wine bottles from a sample is given by h.

Task:

For this winery and this vintage, write down a 95% confidence interval that is symmetrical about h for the unknown relative proportion of wine bottles in which the wine is corked.

Task 25 (Part 2)

Caffeine

Task:

a) Lea drinks a cup of coffee. The diagram below shows the graph of the function K, which models the concentration $K(t)$ of caffeine in Lea's blood in terms of the time t after Lea drinks the coffee (t in $\mathrm{h}, K(t)$ in mg / L).

1) Using the diagram above, determine the time in minutes after drinking the coffee at which the concentration of caffeine in the blood is at a maximum.
\qquad min
[0/1 p.]
2) Complete the gaps in the following sentence by putting a cross next to one of the given possibilities for each gap so that the sentence becomes a correct statement. [0/1/2/1 p.]

The function K has \qquad in the interval $(0,0.8)$ and in this interval the sign of the \qquad changes.

(1)	
a point of inflexion	\square
a maximum or minimum	\square
a zero	\square

(2)	
concavity	\square
gradient	\square
values of the function	\square

b) The solubility of caffeine in water gives the maximum number of grams of caffeine per litre (g / L) that can be dissolved. The solubility is dependent on the temperature. It can be approximated by the function f.
$f(T)=6.42 \cdot e^{0.05 \cdot T}$ with $0 \leq T \leq 90$
$T \ldots$ temperature in ${ }^{\circ} \mathrm{C}$
$f(T)$... solubility of caffeine in water at the temperature T in g / L
A person claims:
"If the temperature increases by $10^{\circ} \mathrm{C}$, then the solubility of caffeine in water increases by around 1.65 times."

1) Verify by calculation whether the claim is true.

The following equation is formed:
$2 \cdot 6.42=6.42 \cdot e^{0.05 \cdot T}$
2) Interpret the solution to this equation in the given context.

Task 26 (Part 2, Best-of Assessment)

CO_{2} and Climate Protection

In recent decades, the CO_{2} concentration of the Earth's atmosphere has increased due to vehicle traffic, among other factors.

Task:
 used.

Car A travels a distance of $s \mathrm{~km}$ with an average petrol consumption of 7.9 litres per 100 km .

In order to offset these CO_{2} emissions, b trees are to be planted. It is assumed that each of these trees captures 500 kg of CO_{2} over its whole lifetime.

1) Write down the number b of trees to be planted in terms of s.

$$
b=
$$

\qquad

Car B travels a distance of 15000 km . In order to offset these CO_{2} emissions, 5 trees are planted.
2) Determine the average petrol consumption (in litres per 100 km) of car B on this journey.
b) Alongside CO_{2}, other gases also contribute to global warming. The emissions of these gases are converted into a so-called CO_{2} equivalent.

The table below shows information about the population (in millions) for some EU countries in the year 2015 and the corresponding CO_{2} equivalents (in tonnes per person).

	population in millions	CO_{2} equivalent in tonnes per person
Belgium	11.2	11.9
France	66.4	6.8
Italy	60.8	7.0
Luxembourg	0.6	18.5
The Netherlands	16.9	12.3

Data sources: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_and_population_change_statistics/ de\&oldid=320539 [24.07.2020],
https://de.wikipedia.org/wiki/Liste_der_Länder_nach_Treibhausgas-Emissionen [24.07.2020].

1) Determine the average CO_{2} equivalent \bar{e} (in tonnes per person) for the whole of the part of the EU represented in the table above.
$\bar{e}=$ \qquad tonnes per person

Lukas is only aware of the values for the CO_{2} equivalents for the individual countries given in the table above but not the corresponding population values. He calculates the mean \bar{x} of the CO_{2} equivalents: $\bar{x}=11.3$.
2) Without using the value of \bar{e} calculated above, explain why \bar{x} must be greater than \bar{e}.
[0/1 p.]

Task 27 (Part 2, Best-of Assessment)

Velocity-Time Graph

The velocities of 2 cars ($\operatorname{car} A$ and $\operatorname{car} B$) are modelled as functions in terms of time. The velocitytime graph shown below shows the corresponding graphs. The time t is given in seconds and the velocities are given in m / s.

Car A and car B set off from standing at time $t=0$. They both have a velocity of $12 \mathrm{~m} / \mathrm{s}$ at time $t=10$.

Car A moves for $t \in[0,6]$ at a velocity of $v_{1}(t)$ and for $t \in[6,10]$ at a constant velocity of $v_{2}(t)$.
Car B moves for $t \in[0,10]$ at a velocity of $v_{3}(t)=0.12 \cdot t^{2}$.

Task:

a) In the time interval $[0,6]$, car A covers a distance of 36 m .

In the time interval $\left[0, t_{1}\right]$ with $6 \leq t_{1} \leq 10, \operatorname{car} A$ covers a distance of length $d(d$ in m).

1) Write d in terms of t_{1}.

$$
d=
$$

\qquad

In the time interval $[0,10]$ car A covers a longer distance than $\operatorname{car} B$.
2) Determine the length in metres by which this distance is longer.
b) For car A the following conditions hold:

- At time $t=6$, the velocity is $12 \mathrm{~m} / \mathrm{s}$.
- At time $t=0$, the acceleration is $0 \mathrm{~m} / \mathrm{s}^{2}$.
- At time $t=3$, the acceleration is at its maximum value.

The following statement holds for the function $v_{1}:[0,6] \rightarrow \mathbb{R}$:
$v_{1}(t)=p \cdot t^{3}+q \cdot t^{2}+r \cdot t$ for all $t \in[0,6]$ with $p, q, r \in \mathbb{R}$

1) Write down a system of 3 equations with which the coefficients p, q and r can be calculated.
[0/1/2/1 p.]
c) The acceleration of car B in the time interval $[0,10]$ is described in terms of the time t by the function $a_{3}\left(t\right.$ in $\mathrm{s}, a_{3}(t)$ in $\left.\mathrm{m} / \mathrm{s}^{2}\right)$.
2) In the coordinate system given below, draw the graph of the acceleration function a_{3}.

Task 28 (Part 2, Best-of Assessment)

Dice Game

In a dice game, different dice, each with 6 faces, are used. For all of the dice used, the probability of any of the faces occurring is the same for all faces. The results of each throw are independent of each other.

Three types of dice, A, B and C, are used. The faces of these dice are shown in the diagram below.

Task:

a) A player throws one type B dice and one type C dice simultaneously one time.

1) Determine the probability that the sum of the numbers shown on the faces is 8 . [0/1 p.]
b) The random variables X_{A}, X_{B} and X_{C} give the number that occurs after being thrown for a type A dice, a type B dice and a type C dice respectively. One of these three random variables has an integer expectation value.
2) Write down this integer expectation value.

Both of the other random variables have the same standard deviation.
2) Determine this standard deviation.
c) A type C dice is thrown n times. The random variable Y_{n} gives the number of throws for which an odd number is shown on the face in these n throws $(n \in \mathbb{N})$. The expectation value of Y_{n} is given by μ_{n} and the standard deviation is given by σ_{n}.

1) Write down μ_{n} and σ_{n} in terms of n.

$$
\mu_{n}=
$$

\qquad

$$
\sigma_{n}=
$$

\qquad

